【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元.假設同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下.
甲公司送餐員送餐單數(shù)頻數(shù)表:
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表:
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
根據(jù)上表數(shù)據(jù),利用所學的統(tǒng)計學知識:
(1)求甲公司送餐員日平均工資;
(2)某人擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日平均工資的角度考慮,他應該選擇去哪家公司應聘,說明理由.
【答案】(1)188.5(2)乙
【解析】試題分析:
(1)計算出每天的平均單數(shù)即可,用單數(shù)乘以相應頻率然后相加可得平均單數(shù),再計算可得甲公司日均工資;
(2)按照乙公司的規(guī)定,先計算出各單數(shù)對應的工資,然后同(1)計算出乙公司的日均公資,比較可知.
試題解析:
(1)公司送餐員日平均送餐單數(shù)為38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.
所以甲公司送餐員日平均工資為70+3×39.5=188.5(元).
(2)設乙公司送餐員送餐單數(shù)為a,乙公司送餐員日工資為X元.
當a=38時,X=38×5=190;當a=39時,X=39×5=195;當a=40時,X=40×5=200;當a=41時,X=40×5+1×7=207;當a=42時,X=40×5+2×7=214.
所以乙公司送餐員日平均工資為
190×+195×
+200×
+207×
+214×
=
(元).
因為188.5<202.2,故這個人應該選擇去乙公司應聘.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“
”,則
:“
”
B. 命題“若,則
”的否命題是真命題
C. 若為假命題,則
為假命題
D. 若是
的充分不必要條件,則
是
的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式。
(1) 若對于所有的實數(shù)x不等式恒成立,求m的取值范圍;
(2) 設不等式對于滿足的一切m的值都成立,求x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】孝感車天地關于某品牌汽車的使用年限(年)和所支出的維修費用
(千元)由如表的統(tǒng)計資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫出散點圖并判斷使用年限與所支出的維修費用是否線性相關;如果線性相關,求回歸直線方程;
(2)若使用超過8年,維修費用超過1.5萬元時,車主將處理掉該車,估計第10年年底時,車主是否會處理掉該車?
()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點E到點A與點B
的直線斜率之積為
,點E的軌跡為曲線C.
(1)求C的方程;
(2)過點D作直線l與曲線C交于
,
兩點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求適合下列條件的橢圓的標準方程:
(1)長軸長是10,離心率是;
(2)在x軸上的一個焦點,與短軸兩個端點的連線互相垂直,且焦距為6.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率為80%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
據(jù)此估計,該運動員三次投籃均命中的概率為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com