【題目】如圖,四棱錐的底面是正方形,
平面
,
,點
是
上的點,且
.
(1)求證:對任意的 ,都有
.
(2)設二面角C-AE-D的大小為 ,直線BE與平面
所成的角為
,
若,求
的值.
【答案】(1)見解析; (2).
【解析】
(1)因為SD⊥平面ABCD,BD是BE在平面ABCD上的射影,由三垂線定理只要證AC
⊥BD即可.(2)先找出θ計算出cosθ,再找到,求出點O到BE的距離,再求出sin
,解
方程得到
的值.
(1)證明:連接BE、BD,由底面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE
(2)解:由SD⊥平面ABCD知,∠DBE=φ,
∵SD⊥平面ABCD,CD平面ABCD,∴SD⊥CD.
又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.
連接AE、CE,過點D在平面SAD內作DF⊥AE于F,連接CF,則CF⊥AE,
故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.
在Rt△ADE中,∵AD=a,DE=λa∴AE=a
從而DF==
在Rt△CDF中,tanθ==
,所以
.
過點B作EO的垂線BG,因為AC⊥平面BDE,所以AC⊥BG,
所以∠BEO就是直線BE與平面所成的角
,
設點O到BE的距離為h,則由等面積得
所以,
因為,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】一盒中裝有12個球,其中5個紅球,4個黑球,2個白球,1個綠球.從中隨機取出1球,求:
(1)取出1球是紅球或黑球的概率;
(2)取出1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為半圓
的直徑,點
是半圓弧上的兩點,
,
.曲線
經過點
,且曲線
上任意點
滿足:
為定值.
(Ⅰ)求曲線的方程;
(Ⅱ)設過點的直線
與曲線
交于不同的兩點
,求
面積最大時的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
為自然對數(shù)的底數(shù),
.
(1)試討論函數(shù)的單調性;
(2)當時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點是棱長為2的正方體
的棱
的中點,點
在面
所在的平面內,若平面
分別與平面
和平面
所成的銳二面角相等,則點
到點
的最短距離是( )
A. B.
C. 1 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產品生產廠家根據(jù)以往的生產銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產產品(百臺),其總成本為
(萬元),其中固定成本為
萬元,并且每生產
百臺的生產成本為
萬元(總成本
固定成本
生產成本).銷售收入
(萬元)滿足
,假定該產品產銷平衡(即生產的產品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤
銷售收入
總成本);
(2)工廠生產多少臺產品時,可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“
”,則
:“
”
B. 命題“若,則
”的否命題是真命題
C. 若為假命題,則
為假命題
D. 若是
的充分不必要條件,則
是
的必要不充分條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com