【題目】已知雙曲線的左、右焦點(diǎn)分別為
,圓
與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若
.則該雙曲線的離心率為
A. 2B. 3C. D.
【答案】D
【解析】
本題首先可以通過(guò)題意畫出圖像并過(guò)點(diǎn)作
垂線交
于點(diǎn)
,然后通過(guò)圓與雙曲線的相關(guān)性質(zhì)判斷出三角形
的形狀并求出高
的長(zhǎng)度,
的長(zhǎng)度即
點(diǎn)縱坐標(biāo),然后將
點(diǎn)縱坐標(biāo)帶入圓的方程即可得出
點(diǎn)坐標(biāo),最后將
點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果。
根據(jù)題意可畫出以上圖像,過(guò)點(diǎn)作
垂線并交
于點(diǎn)
,
因?yàn)?/span>,
在雙曲線上,
所以根據(jù)雙曲線性質(zhì)可知,,即
,
,
因?yàn)閳A的半徑為
,
是圓
的半徑,所以
,
因?yàn)?/span>,
,
,
,
所以,三角形
是直角三角形,
因?yàn)?/span>,所以
,
,即
點(diǎn)縱坐標(biāo)為
,
將點(diǎn)縱坐標(biāo)帶入圓的方程中可得
,解得
,
,
將點(diǎn)坐標(biāo)帶入雙曲線中可得
,
化簡(jiǎn)得,
,
,
,故選D。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的不等式
有且僅有兩個(gè)正整數(shù)解(其中e=2.71828… 為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)
的取值范圍是( )
A. (,
] B. (
,
] C. [
,
) D. [
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在底面是正三角形、側(cè)棱垂直于底面的三棱柱ABC﹣A1B1C1中,底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為2a,點(diǎn)M是A1B1的中點(diǎn).
(1)證明:MC1⊥AB1.
(2)求直線AC1與側(cè)面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著共享單車的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮廣元某景點(diǎn)設(shè)有共享電動(dòng)車租車點(diǎn),共享電動(dòng)車的收費(fèi)標(biāo)準(zhǔn)是每小時(shí)2元
不足1小時(shí)的部分按1小時(shí)計(jì)算
甲、乙兩人各租一輛電動(dòng)車,若甲、乙不超過(guò)一小時(shí)還車的概率分別為
;一小時(shí)以上且不超過(guò)兩小時(shí)還車的概率分別為
;兩人租車時(shí)間都不會(huì)超過(guò)三小時(shí).
Ⅰ
求甲、乙兩人所付租車費(fèi)用相同的概率;
Ⅱ
設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量
,求
的分布列與數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位員工人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示.
(1)下表是年齡的頻率分布表,求正整數(shù)的值;
區(qū)間 | |||||
人數(shù) |
(2)現(xiàn)在要從年齡較小的第組中用分層抽樣的方法抽取
人,年齡在第
組抽取的員工的人數(shù)分別是多少?
(3)在(2)的前提下,從這人中隨機(jī)抽取
人參加社區(qū)宣傳交流活動(dòng),求至少有
人年齡在第
組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線,
,則下面結(jié)論正確的是( )
A. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個(gè)單位長(zhǎng)度,得到曲線
B. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個(gè)單位長(zhǎng)度,得到曲線
C. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個(gè)單位長(zhǎng)度,得到曲線
D. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個(gè)單位長(zhǎng)度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C:x2-y2=1及直線l:y=kx+1.
(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A,B兩點(diǎn),且線段AB中點(diǎn)的橫坐標(biāo)為,求線段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上在第一象限內(nèi)的點(diǎn)H(1,t)到焦點(diǎn)F的距離為2.
(1)若,過(guò)點(diǎn)M,H的直線與該拋物線相交于另一點(diǎn)N,求
的值;
(2)設(shè)A、B是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且(其中O為坐標(biāo)原點(diǎn)).
①求證:直線AB必過(guò)定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo);
②過(guò)點(diǎn)Q作AB的垂線與該拋物線交于G、D兩點(diǎn),求四邊形AGBD面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com