日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直線經(jīng)過橢圓)的左頂點(diǎn)

          上頂點(diǎn).橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線、與直線

          分別交于、兩點(diǎn).

          )求橢圓的標(biāo)準(zhǔn)方程;

          )求線段長(zhǎng)度的最小值;

          )當(dāng)線段的長(zhǎng)度最小時(shí),橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù);若不存在,請(qǐng)說明理由.

          【答案】)橢圓上存在兩個(gè)點(diǎn),使得的面積為

          【解析】

          )令,所以,所以,令,所以,所以

          ,所以橢圓的標(biāo)準(zhǔn)方程為

          )顯然直線的斜率存在且為正數(shù),設(shè)直線的方程為),聯(lián)立得

          ,解得,由

          顯然,由求根公式得(舍),所以,從而直線的方程為,聯(lián)立得,解得,所以,當(dāng)且僅當(dāng)時(shí)取,因此,線段長(zhǎng)度的最小值為;

          )由()知,時(shí)線段的長(zhǎng)度最小,此時(shí),因?yàn)?/span>的面積為,所以點(diǎn)到直線的距離為,因?yàn)橹本的方程為,設(shè)過點(diǎn)且與直線平行的直線的方程為,由兩平行線之間距離為,解得,當(dāng)時(shí),直線的方程為,聯(lián)立得,消去,顯然判別式,故點(diǎn)個(gè);當(dāng)時(shí),直線

          的方程為,聯(lián)立得,消去,顯然判別式,故

          點(diǎn)不存在.所以,橢圓上存在兩個(gè)點(diǎn),使得的面積為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)x萬件,需另投入流動(dòng)成本C(x)萬元,當(dāng)年產(chǎn)量小于7萬件時(shí),C(x)=x2+2x(萬元);當(dāng)年產(chǎn)量不小于7萬件時(shí),C(x)=6x+1nx+﹣17(萬元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的產(chǎn)M當(dāng)年全部售完.

          (1)寫出年利潤(rùn)P(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收人﹣固定成本﹣流動(dòng)成本

          (2)當(dāng)年產(chǎn)量約為多少萬件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?(取e3≈20)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          1)討論的單調(diào)性;

          2)若有兩個(gè)極值點(diǎn),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將邊長(zhǎng)為的正方形沿對(duì)角線折疊,使得平面平面,平面,的中點(diǎn),且

          (1)求證:;

          (2)求二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對(duì)這四種干果進(jìn)行促銷:一次購買干果的總價(jià)達(dá)到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.

          ①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;

          ②在促銷活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義域?yàn)?/span>的函數(shù)圖像的兩個(gè)端點(diǎn)為、,向量圖像上任意一點(diǎn),其中,若不等式恒成立,則稱函數(shù)上滿足“范圍線性近似”,其中最小正實(shí)數(shù)稱為該函數(shù)的線性近似閾值.若函數(shù)定義在上,則該函數(shù)的線性近似閾值是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖:已知某公園的四處景觀分別位于等腰梯形的四個(gè)頂點(diǎn)處,其中,兩地的距離為千米,,兩地的距離為千米,.現(xiàn)擬規(guī)劃在(不包括端點(diǎn))路段上增加一個(gè)景觀,并建造觀光路直接通往處,造價(jià)為每千米萬元,又重新裝飾路段,造價(jià)為每千米萬元.

          (1)若擬修建觀光路路段長(zhǎng)為千米,求路段的造價(jià);

          (2)設(shè),當(dāng)為何值時(shí),,段的總造價(jià)最低.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若關(guān)于x的方程僅有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

          2)若是函數(shù)的極大值點(diǎn),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某數(shù)學(xué)小組到進(jìn)行社會(huì)實(shí)踐調(diào)查,了解鑫鑫桶裝水經(jīng)營(yíng)部在為如何定價(jià)發(fā)愁。進(jìn)一步調(diào)研了解到如下信息:該經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元,銷售單價(jià)與日均銷售量的關(guān)系如下表:

          銷售單價(jià)/元

          6

          7

          8

          9

          10

          11

          12

          日均銷售量/桶

          480

          440

          400

          360

          320

          280

          240

          根據(jù)以上信息,你認(rèn)為該經(jīng)營(yíng)部定價(jià)為多少才能獲得最大利潤(rùn)?( )

          A.每桶8.5B.每桶9.5C.每桶10.5D.每桶11.5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案