日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,已知是等邊三角形,平面,,,點(diǎn)為棱的中點(diǎn).

          (1)求證:平面;

          (2)求三棱錐的體積.

          【答案】(1)證明見解析;(2) .

          【解析】

          (1)取BC的中點(diǎn)Q,連MQ與DQ,可證得四邊形為平行四邊形,故,根據(jù)線面平行的判定定理可得結(jié)論成立.(2)取AB的中點(diǎn)N,連接AN,根據(jù)條件可得到平面,且四邊形為直角梯形,即確定了三棱錐的高和底面,然后利用可得所求體積.

          (1)證明:取PC的中點(diǎn)Q,連接MQ與DQ,

          的中位線,

          ,且

          ,

          ,且

          ∴四邊形為平行四邊形,

          平面,平面

          平面

          (2)取AB的中點(diǎn)N,連接AN,

          為等邊三角形,

          平面,平面,

          ∴平面平面

          又平面平面,

          平面

          ∴四邊形為直角梯形,

          ,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動,有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.

          1)已知這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學(xué)老師的概率;

          2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為,求的分布列和均值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《中國詩詞大會》(第三季)亮點(diǎn)頗多,在“人生自有詩意”的主題下,十場比賽每場都有一首特別設(shè)計(jì)的開場詩詞在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《沁園春·長沙》、《蜀道難》、《敕勒歌》、《游子吟》、《關(guān)山月》、《清平樂·六盤山》排在后六場,且《蜀道難》排在《游子吟》的前面,《沁園春·長沙》與《清平樂·六盤山》不相鄰且均不排在最后,則后六場的排法有__________種.(用數(shù)字作答)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】高一年級某個班分成7個小組,利用假期參加社會公益服務(wù)活動每個小組必須全員參加,參加活動的次數(shù)記錄如下:

          組別

          參加活動次數(shù)

          3

          2

          4

          3

          3

          4

          2

          求該班的7個小組參加社會公益服務(wù)活動數(shù)的中位數(shù)及與平均數(shù)v;

          從這7個小組中隨機(jī)選出2個小組在全校進(jìn)行活動匯報(bào),求“選出的2個小組參加社會公益服務(wù)活動次數(shù)相等”的概率.

          小組每組有4名同學(xué),小組有5名同學(xué),記“該班學(xué)參加社會公益服務(wù)活動的平均次數(shù)”為,寫出v的大小關(guān)系結(jié)論不要求證明

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,平面ABCD,為等邊三角形,,,M為AC的中點(diǎn).

          證明:平面PCD;

          若PD與平面PAC所成角的正切值為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1)當(dāng)時,求函數(shù)的極值;

          (2)若不等式對任意恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的左焦點(diǎn)為,且點(diǎn)C上.

          C的方程;

          設(shè)點(diǎn)P關(guān)于x軸的對稱點(diǎn)為點(diǎn)不經(jīng)過P點(diǎn)且斜率為的直線1C交于AB兩點(diǎn),直線PA,PB分別與x軸交于點(diǎn)M,N,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4 坐標(biāo)系與參數(shù)方程選講

          在直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線極坐標(biāo)方程為.

          (1)求直線的普通方程以及曲線的參數(shù)方程;

          (2)當(dāng)時,為曲線上動點(diǎn),求點(diǎn)到直線距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績,得到如下所示的列聯(lián)表:

          優(yōu)秀

          非優(yōu)秀

          總計(jì)

          甲班

          10

          乙班

          30

          總計(jì)

          已知在全部105人中隨機(jī)抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(  )

          A. 列聯(lián)表中的值為30,的值為35

          B. 列聯(lián)表中的值為15,的值為50

          C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認(rèn)為“成績與班級有關(guān)系”

          D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認(rèn)為“成績與班級有關(guān)系”

          查看答案和解析>>

          同步練習(xí)冊答案