日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),

          Ⅰ)設,求函數(shù)的單調(diào)區(qū)間;

          Ⅱ)若,函數(shù),試判斷是否存在,使得為函數(shù)的極小值點.

          【答案】1遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2存在

          【解析】試題分析:(I)由題意,得,令,得.可得函數(shù)的單調(diào)區(qū)間

          II)由已知有 .令,則.由題可得函數(shù)在區(qū)間上單調(diào)遞增.且 .故存在 ,使得,且當時, ,當, ,所以存在,使得為函數(shù)的極小值點.

          試題解析:(I)由題意可知: ,其定義域為,則

          ,得,令,得.故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

          II)由已知有,對于,有

          ,則

          ,有

          ,所以,故當時,

           函數(shù)在區(qū)間上單調(diào)遞增.

          注意到,

          故存在 ,使得,且當時, ,當,所以存在,使得為函數(shù)的極小值點.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】近年來,太陽能技術運用的步伐日益加快.2002年全球太陽能電池的年生產(chǎn)量達到670 MW,年生產(chǎn)量的增長率為34%.以后四年中,年生產(chǎn)量的增長率逐年遞增2%(如,2003年的年生產(chǎn)量的增長率為36%.

          1)求2006年全球太陽能電池的年生產(chǎn)量(結果精確到0.1 MW);

          2)目前太陽能電池產(chǎn)業(yè)存在的主要問題是市場安裝量遠小于生產(chǎn)量,2006年的實際安裝量為1420MW.假設以后若干年內(nèi)太陽能電池的年生產(chǎn)量的增長率保持在42%,到2010年,要使年安裝量與年生產(chǎn)量基本持平(即年安裝量不少于年生產(chǎn)量的95%),這四年中太陽能電池的年安裝量的平均增長率至少應達到多少(結果精確到0.1%)?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某高科技公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的每天固定成本為元,每生產(chǎn)件,需另投入成本為元,每件產(chǎn)品售價為元(該新產(chǎn)品在市場上供不應求可全部賣完).

          (1)寫出每天利潤關于每天產(chǎn)量的函數(shù)解析式;

          (2)當每天產(chǎn)量為多少件時,該公司在這一新產(chǎn)品的生產(chǎn)中每天所獲利潤最大.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某市舉行中學生詩詞大賽,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復賽資格的人數(shù)為()

          A.640B.520C.280D.240

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)若不等式時恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓

          )過點的直線被圓截得的弦長為8,求直線的方程;

          )當取何值時,直線與圓相交的弦長最短,并求出最短弦長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】判斷下列各式的符號:

          sin 145°cos(210°);②sincostan 5.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          )當時,求此函數(shù)對應的曲線在處的切線方程.

          )求函數(shù)的單調(diào)區(qū)間.

          )對,不等式恒成立,求的取值范圍.

          【答案】;)見解析;)當時, ,當

          【解析】試題分析:(1利用導數(shù)的意義,求得切線方程為;(2求導得,通過, , 分類討論,得到單調(diào)區(qū)間;(3分離參數(shù)法,得到,通過求導,得

          試題解析:

          )當時, ,

          ,∴切線方程

          ,則,

          時, , 上為增函數(shù).

          上為減函數(shù),

          時, 上為增函數(shù),

          時, , 上為單調(diào)遞增,

          上單調(diào)遞減.

          )當時, ,

          時,由

          ,對恒成立.

          ,則

          ,

          極小

          點睛:本題考查導數(shù)在函數(shù)綜合題型中的應用。含參的函數(shù)單調(diào)性討論,考查學生的分類討論能力,本題中,結合導函數(shù)的形式,分類討論;含參的恒成立問題,一般采取分離參數(shù)法,解決恒成立。

          型】解答
          束】
          20

          【題目】已知集合,集合且滿足:

          , 恰有一個成立.對于定義

          )若, , ,求的值及的最大值.

          )取, , 中任意刪去兩個數(shù),即剩下的個數(shù)的和為,求證:

          )對于滿足的每一個集合,集合中是否都存在三個不同的元素, ,使得恒成立,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】中,內(nèi)角、、所對的邊分別是、、,不等式對一切實數(shù)恒成立.

          1)求的取值范圍;

          2)當取最大值,且的周長為時,求面積的最大值,并指出面積取最大值時的形狀.(參考知識:已知、,;、,

          查看答案和解析>>

          同步練習冊答案