【題目】在極坐標(biāo)系中,已知圓 的圓心
,半徑
.
(1)求圓 的極坐標(biāo)方程;
(2)若 ,直線
的參數(shù)方程為
為參數(shù)),直線
交圓
于
兩點(diǎn),求弦長(zhǎng)
的取值范圍.
【答案】
(1)解:因?yàn)? 的直角坐標(biāo)為
,所以圓
的直角坐標(biāo)方程為
,
化為極坐標(biāo)方程是
(2)解:將 為參數(shù)),代入圓
的直角坐標(biāo)方程
,
得 ,即
,
有 ,
故 ,
因?yàn)? ,所以
,所以
,
即弦長(zhǎng) 的取值范圍是
.
【解析】(1)根據(jù)題意求出圓的標(biāo)準(zhǔn)方程,再由題意利用極坐標(biāo)和直角坐標(biāo)的互化關(guān)系得到圓的極坐標(biāo)方程。(2)根據(jù)題意把直線的參數(shù)方程代入到圓的方程消參,結(jié)合韋達(dá)定理求出t 1 + t2、 t1t2的代數(shù)式,然后把上式代入到弦長(zhǎng)公式中即可得到關(guān)于sin2的代數(shù)式,利用角的取值范圍即可求出sin2
的取值范圍從而求出弦長(zhǎng)的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.如果平面 平面
,則
內(nèi)任意一條直線必垂直于
B.若直線 不平行于平面
,則
內(nèi)不存在直線平行于直線
C.如果平面 不垂直于平面
,那么平面
內(nèi)一定不存在直線垂直于平面
D.若直線 不垂直于平面
,則
內(nèi)不存在直線垂直于直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺(tái)為了提高收視率而舉辦有獎(jiǎng)問答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了 人,回答問題統(tǒng)計(jì)結(jié)果及頻率分布直方圖如圖表所示.
(1)分別求出 的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C: ,點(diǎn)
在x軸的正半軸上,過點(diǎn)M的直線
與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若 ,且直線
的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線 繞點(diǎn)M如何轉(zhuǎn)動(dòng),
恒為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,已知圓
,點(diǎn)
,點(diǎn)
,以B為圓心,
為半徑作圓,交圓C于點(diǎn)P,且
的平分線交線段CP于點(diǎn)Q.
(1)當(dāng)a變化時(shí),點(diǎn)Q始終在某圓錐曲線 上運(yùn)動(dòng),求曲線
的方程;
(2)已知直線l過點(diǎn)C,且與曲線 交于M,N兩點(diǎn),記
面積為
,
面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有a個(gè)黑球和b個(gè)白球,隨機(jī)地每次從中取出一球,每次取后不放回,記事件A為“直到第k次才取到黑球”,其中1≤k≤b;事件B為“第7次取出的球恰好是黑球”,其中1≤k≤b。
(Ⅰ)若a=5,b=3,k=2,求事件A發(fā)生的概率;
(Ⅱ)判斷事件B發(fā)生的概率是否隨k取值的變化而變化?并說明理由;
(Ⅲ)比較a=5,b=9時(shí)事件A發(fā)生的概率與a=5,b=10時(shí)事件A發(fā)生的概率的大小,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
為等邊三角形,平面
平面
,
,
,
,
,
為
的中點(diǎn).
()求證:
.
()求二面角
的余弦值.
()若
平面
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式
(
).
(Ⅰ)若關(guān)于的不等式
(
)的解集為
,求
,
的值;
(Ⅱ)解關(guān)于的不等式
(
).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com