日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù),

          1)若討論函數(shù)的單調(diào)性;

          2)若,在定義域內(nèi)存在,使得,求證:;

          3)記的反函數(shù),當(dāng)時,求證:

          【答案】1)見解析;(2)證明見解析;(3)證明見解析.

          【解析】

          1)由題意對函數(shù)求導(dǎo),按照、、分類討論,解出的解集即可得解;

          2)求導(dǎo)后,根據(jù)函數(shù)的單調(diào)性可得,令,求導(dǎo)后可證明當(dāng)時,,進而可得,再由函數(shù)的單調(diào)性即可得證;

          3)令,求導(dǎo)可得當(dāng)時,,作差后放縮即可得證.

          1)由題意,

          ,

          ,則,,

          當(dāng)時,,此時,

          故函數(shù),上單調(diào)遞增;

          當(dāng)時,,

          故函數(shù)上單調(diào)遞增;

          當(dāng)時,,

          當(dāng)時,,函數(shù)單調(diào)遞增;

          當(dāng)時,,函數(shù)單調(diào)遞減;

          綜上,當(dāng)時,函數(shù),上單調(diào)遞增;當(dāng)時,函數(shù)上單調(diào)遞增;當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減;

          2)證明:由題意,則,

          所以當(dāng)時,,單調(diào)遞減;

          當(dāng)時,,單調(diào)遞增;

          所以,

          ,

          ,

          可知當(dāng)時,單調(diào)遞減,

          ,所以當(dāng)時,,單調(diào)遞增,

          ,所以當(dāng)時,,

          所以,所以,

          可得,

          所以;

          3)證明:由題意,則原不等式可化為,

          ,則

          所以上單調(diào)遞減,所以

          所以當(dāng)時,

          所以,

          所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直三棱柱中的底面為等腰直角三角形,,點分別是邊,上動點,若直線平面,點為線段的中點,則點的軌跡為  

          A. 雙曲線的一支一部分 B. 圓弧一部分

          C. 線段去掉一個端點 D. 拋物線的一部分

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙二射擊運動員分別對一目標(biāo)射擊次,甲射中的概率為,乙射中的概率為,求:

          (1)人都射中目標(biāo)的概率; (2)人中恰有人射中目標(biāo)的概率;

          (3)人至少有人射中目標(biāo)的概率; (4)人至多有人射中目標(biāo)的概率?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正方體的棱長為2,,,分別是,,,的中點,則過且與平行的平面截正方體所得截面的面積為____和該截面所成角的正弦值為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正方體的棱長為2,,,,分別是,的中點,則過且與平行的平面截正方體所得截面的面積為____,和該截面所成角的正弦值為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點為,復(fù)數(shù)z滿足,下列結(jié)論正確的是(

          A.點的坐標(biāo)為B.復(fù)數(shù)的共軛復(fù)數(shù)的虛部為-2i

          C.復(fù)數(shù)z對應(yīng)的點Z在一條直線上D.z對應(yīng)的點Z間的距離的最小值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】盒子內(nèi)有3個不同的黑球,5個不同的白球.

          1)從中取出3個黑球、4個白球排成一列且4個白球兩兩不相鄰的排法有多少種?

          2)從中任取6個球且白球的個數(shù)不比黑球個數(shù)少的取法有多少種?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求曲線,的直角坐標(biāo)方程;

          (2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)習(xí)小組在研究性學(xué)習(xí)中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當(dāng)天內(nèi)的出芽數(shù)(如圖2).

          根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù) (顆)和溫差 ()具有線性相關(guān)關(guān)系.

          (1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差 ()的回歸方程;

          (2)假如4月1日至7日的日溫差的平均值為11,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).

          附:,

          查看答案和解析>>

          同步練習(xí)冊答案