已知函數(shù),
.
(1)求的極值點(diǎn);
(2)對(duì)任意的,記
在
上的最小值為
,求
的最小值.
(1)是極大值點(diǎn),
是極小值點(diǎn);(2)
.
解析試題分析:(1)利用導(dǎo)數(shù)求出函數(shù)的兩個(gè)極值點(diǎn),并結(jié)合導(dǎo)數(shù)符號(hào)確定相應(yīng)的極大值點(diǎn)與極小值點(diǎn);(2)在(1)的基礎(chǔ)上,對(duì)
與極小值
的大小作分類討論,結(jié)合圖象確定
的表達(dá)式,然后再根據(jù)
的表達(dá)式確定相應(yīng)的最小值.
試題解析:(1),
由解得:
,
,
當(dāng)或
時(shí),
,
當(dāng)時(shí),
所以,有兩個(gè)極值點(diǎn):是極大值點(diǎn),
;
是極小值點(diǎn),
;
(2)過點(diǎn)作直線
,與
的圖象的另一個(gè)交點(diǎn)為
,
則,即
,
已知有解,則
,
解得,
當(dāng)時(shí),
;
;
當(dāng)時(shí),
,
,
其中當(dāng)時(shí),
;
當(dāng)時(shí),
,
;
所以,對(duì)任意的,
的最小值為
(其中當(dāng)
時(shí),
).
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的極值;2.分類討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,x∈(1,+∞).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若是
上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)證明:當(dāng)a≥1時(shí),證明不等式≤x+1對(duì)x∈R恒成立;
(Ⅲ)對(duì)于在(0,1)中的任一個(gè)常數(shù)a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請(qǐng)求出符合條件的一個(gè)x0;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
是自然對(duì)數(shù)的底數(shù),
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),試確定函數(shù)
的零點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,
,其中
,且
.
⑴當(dāng)時(shí),求函數(shù)
的最大值;
⑵求函數(shù)的單調(diào)區(qū)間;
⑶設(shè)函數(shù)若對(duì)任意給定的非零實(shí)數(shù)
,存在非零實(shí)數(shù)
(
),使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
.
(Ⅰ)若,求
的值,并求此時(shí)曲線
在點(diǎn)
處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若曲線在x=l和x=3處的切線互相平行,求a的值及函數(shù)
的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意
,均存在
,使得
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)函數(shù)在區(qū)間
上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(II)當(dāng)時(shí),
恒成立,求整數(shù)
的最大值;
(Ⅲ)試證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com