已知數(shù)列

為等差數(shù)列,且

,

,那么則

等于
先根據(jù)a1=2,a2+a3=13求得d和a5,進(jìn)而根據(jù)等差中項的性質(zhì)知a4+a5+a6=3a5求得答案.
解:在等差數(shù)列{an}中,已知a1=2,a2+a3=13,
得d=3,a5=14,
∴a4+a5+a6=3a5=42.
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分8分)
已知數(shù)列

為等差數(shù)列,且

(1)求數(shù)列

的通項公式;
(2)證明

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知

為銳角,且

,函數(shù)


,數(shù)列{

}的首項

.
(1) 求函數(shù)

的表達(dá)式;
(2)在

中,若

A=2

,

,BC=2,求

的面積
(3) 求數(shù)列

的前

項和

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{a
n},且x=

是函數(shù)f(x)=a
n-1x
3-3[(t+1)a
n-a
n+1] x+1(n≥2)的

一個極值點.?dāng)?shù)列{a
n}中a
1=t,a
2=t
2(t>0且t≠1) .
(1)求數(shù)列{a
n}的通項公式;
(2)記b
n=2(1-

),當(dāng)t=2時,數(shù)列{b
n}的前n項和為S
n,求使S
n>2010的n的最小值;
(3)若c
n=

,證明:

( n∈N
﹡).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在等差數(shù)列

中,有

,則此數(shù)列的前13項和為:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
觀察下表中的數(shù)字排列規(guī)律,第
n行(

)第2個數(shù)是__________.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
過曲線

上的一點

作曲線的切線,交

軸于點

;過

作垂直于

軸的直線交曲線于

,過

作曲線的切線,交

軸于點

;過

作垂直于

軸的直線交曲線于

,過

作曲線的切線,交

軸于點

;……如此繼續(xù)下去得到點列:

,設(shè)

的橫坐標(biāo)為

.
(Ⅰ)試用

表示

;
(Ⅱ)證明:


;
(Ⅲ)證明:

.
查看答案和解析>>