【題目】定義:若函數(shù)對任意的
,都有
成立,則稱
為
上的“淡泊”函數(shù).
(1)判斷是否為
上的“淡泊”函數(shù),說明理由;
(2)是否存在實(shí)數(shù),使
為
上的“淡泊”函數(shù),若存在,求出
的取值范圍;不存在,說明理由;
(3)設(shè)是
上的“淡泊”函數(shù)(其中
不是常值函數(shù)),且
,若對任意的
,都有
成立,求
的最小值.
【答案】(1)是,理由詳見解析;(2)存在,;(3)最小值為
.
【解析】
(1)任取x1,x2∈[﹣1,1],可得|f(x1)﹣f(x2)|的不等式,結(jié)合題意可判函數(shù)為“淡泊”函數(shù);
(2)假設(shè)存在k∈R,使得在[﹣1,+∞)上為“淡泊”函數(shù),則滿足對任意x1,x2∈[﹣1,+∞),都有|f(x1)﹣f(x2)|≤|x1﹣x2|成立,代入已知可得k的不等式,解不等式可得;
(3)不妨令0<x1≤x2<1,運(yùn)用絕對值不等式的性質(zhì)以及新定義,即可得到結(jié)論.
(1)任取x1,x2∈[﹣1,1],可得|f(x1)﹣f(x2)|
=|()﹣(
)|
=|(x1+x2)(x1﹣x2)
(x1﹣x2)|
=|x1﹣x2||(x1+x2)
|
∵x1,x2∈[﹣1,1],∴(x1+x2)∈[
,
],
∴(x1+x2)
|∈[0,1],即|
(x1+x2)
|≤1,
∴|x1﹣x2||(x1+x2)
|≤|x1﹣x2|
∴|f(x1)﹣f(x2)|≤|x1﹣x2|
∴函數(shù)在[﹣1,1]上是“淡泊”函數(shù);
(2)假設(shè)存在k∈R,使得在[﹣1,+∞)上為“淡泊”函數(shù),
則滿足對任意x1,x2∈[﹣1,+∞),都有|f(x1)﹣f(x2)|≤|x1﹣x2|成立,
故||=|k||
|≤|x1﹣x2|,
∴|k|≤|(x1+2)(x2+2)|,
∵x1,x2∈[﹣1,+∞),∴(x1+2)(x2+2)>1,
∴|k|≤1,解得﹣1≤k≤1;
(3)不妨令0<x1≤x2<1,由“淡泊”函數(shù)性質(zhì),有|f(x1)﹣f(x2)|≤|x1﹣x2|成立,
若x2﹣x1,則|f(x1)﹣f(x2)|≤|x1﹣x2|
;
若x2﹣x1,|f(x1)﹣f(x2)|=|f(x1)﹣f(0)+f(1)﹣f(x2)|
≤|f(x1)﹣f(0)|+|f(1)﹣f(x2)|≤|x1﹣0|+|1﹣x2|=1﹣x2+x1=1﹣(x2﹣x1),
綜上,對任意0<x1≤x2<1,|f(x1)﹣f(x2)|恒成立,
而對任意的
,都成立,則
∴,即
的最小值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)學(xué)中將
個數(shù)
的和記作
(1)設(shè),求
;
(2)是否存在互不相等的非負(fù)整數(shù),
,使得
成立,若存在,請寫出推理的過程;若不存在請證明;
(3)設(shè)是不同的正實(shí)數(shù),
,對任意的
,都有
,判斷
是否為一個等比數(shù)列,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù)
,如果存在兩條平行直線
與
,使得對于任意
,都有
恒成立,那么稱函數(shù)
是帶狀函數(shù),若
,
之間的最小距離
存在,則稱
為帶寬.
(1)判斷函數(shù)是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,說明理由;
(2)求證:函數(shù)(
)是帶狀函數(shù);
(3)求證:函數(shù)(
)為帶狀函數(shù)的充要條件是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社會機(jī)構(gòu)為了調(diào)查對手機(jī)游戲的興趣與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下列聯(lián)表:
(1)根據(jù)列聯(lián)表,能否有的把握認(rèn)為對手機(jī)游戲的興趣程度與年齡有關(guān)?
(2)若已經(jīng)從40歲以上的被調(diào)查者中用分層抽樣的方式抽取了10名,現(xiàn)從這10名被調(diào)查者中隨機(jī)選取3名,記這3名被選出的被調(diào)查者中對手機(jī)游戲很有興趣的人數(shù)為,求
的分布列及數(shù)學(xué)期望.
附:
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(diǎn)
,且漸近線方程為
,直線
與曲線
交于點(diǎn)
、
兩點(diǎn).
(1)求雙曲線的方程;
(2)若直線過原點(diǎn),點(diǎn)
是曲線
上任一點(diǎn),直線
,
的斜率都存在,記為
、
,試探究
的值是否與點(diǎn)
及直線
有關(guān),并證明你的結(jié)論;
(3)若直線過點(diǎn)
,問在
軸上是否存在定點(diǎn)
,使得
為常數(shù)?若存在,求出點(diǎn)
坐標(biāo)及此常數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
為實(shí)數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)是函數(shù)
的導(dǎo)函數(shù),若
對任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場營銷人員進(jìn)行某商品M市場營銷調(diào)查發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計(jì)得到以下表:
反饋點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0. 5 | 0. 6 | 1 | 1. 4 | 1. 7 |
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(百件)與返還點(diǎn)數(shù)
之間的相關(guān)關(guān)系. 請用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測若返回6個點(diǎn)時該商品每天銷量;
(2)若節(jié)日期間營銷部對商品進(jìn)行新一輪調(diào)整. 已知某地?cái)M購買該商品的消費(fèi)群體十分龐大,經(jīng)營銷調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點(diǎn)數(shù)預(yù)期值區(qū)間(百分比) | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(。┣筮@200位擬購買該商品的消費(fèi)者對返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值的樣本平均數(shù)及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到0. 1);
(ⅱ)將對返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在和
的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取2名進(jìn)行跟蹤調(diào)查,設(shè)抽出的2人中,至少有一個人是“欲望膨脹型”消費(fèi)者的概率是多少?
參考公式及數(shù)據(jù):①,
;②
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,對任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com