日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

          (1)若曲線參數(shù)方程為:為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

          (2)若曲線參數(shù)方程為:為參數(shù)),,且曲線與曲線交點(diǎn)分別為,求的取值范圍.

          【答案】(1)見解析;(2).

          【解析】分析:(1)兩邊同乘以利用 即可得曲線的直角坐標(biāo)方程,利用平方法消去參數(shù)可得曲線的普通方程;(2)將的參數(shù)方程代入的直角坐標(biāo)方程,根據(jù)直線參數(shù)的幾何意義,利用韋達(dá)定理、輔助角公式結(jié)合三角函數(shù)的有界性可得結(jié)果.

          詳解(1)

          曲線的直角坐標(biāo)方程為:

          曲線的普通方程為:

          (2)將的參數(shù)方程:代入的方程:得:

          的幾何意義可得:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過,.

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;

          (Ⅱ)四邊形的四個(gè)頂點(diǎn)都在橢圓上,且對角線過原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

          (1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

          (2)若直線與曲線交于兩點(diǎn),求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)=

          (I)求函數(shù)的單調(diào)區(qū)間;

          (II)設(shè)函數(shù)=(x+1)lnx-x+1,證明:當(dāng)x>0且x≠1時(shí),x-1與同號。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列推理合理的是( 。

          A. 若函數(shù)yfx)是增函數(shù),則f'x)>0

          B. 因?yàn)?/span>aba,b∈R),則a+2ib+2ii是虛數(shù)單位)

          C. A是三角形ABC的內(nèi)角,若cosA0,則此三角形為銳角三角形

          D. αβ是銳角△ABC的兩個(gè)內(nèi)角,則sinαcosβ

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為常數(shù),為自然對數(shù)的底數(shù))的圖象在點(diǎn)處的切線與該函數(shù)的圖象恰好有三個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍是( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度和聲音能量,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

          表中,

          (1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

          (2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;

          (3)當(dāng)聲音強(qiáng)度大于60分貝時(shí)屬于噪音,會產(chǎn)生噪音污染,城市中某點(diǎn)共受到兩個(gè)聲源的影響,這兩個(gè)聲源的聲音能量分別是,且.已知點(diǎn)的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點(diǎn)是否受到噪音污染的干擾,并說明理由.

          附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是兩個(gè)不同的平面,是兩條不同的直線,有如下四個(gè)命題:

          ,則; ②,則;

          ,則; ④,則

          其中真命題為_________(填所有真命題的序號).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費(fèi)用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關(guān)關(guān)系,近5年的年研發(fā)費(fèi)用和年利潤的具體數(shù)據(jù)如表:

          年研發(fā)費(fèi)用(百萬元)

          年利潤 (百萬元)

          數(shù)據(jù)表明之間有較強(qiáng)的線性關(guān)系.

          (1)求的回歸直線方程;

          (2)如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬元,預(yù)測該企業(yè)獲得年利潤為多少?

          參考數(shù)據(jù):回歸直線的系數(shù)

          查看答案和解析>>

          同步練習(xí)冊答案