【題目】已知橢圓:
的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為
的等腰直角三角形,
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓
上,點(diǎn)
在直線
上,且
,求證:
為定值;
(3)設(shè)點(diǎn)在橢圓
上運(yùn)動(dòng),
,且點(diǎn)
到直線
的距離為常數(shù)
,求動(dòng)點(diǎn)
的軌跡方程.
【答案】(1)
(2)證明見(jiàn)解析
(3)
【解析】
(1)由橢圓的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,求出,
,由此能求出橢圓
的方程.
(2)設(shè),
,則
的方程
,由
,得
,
,由此能證明
為定值
.
(3)設(shè),
,
,由
,得
,又
點(diǎn)在橢圓上,得:
,從而
,
,由此能求出
點(diǎn)軌跡方程.
解:(1)橢圓
的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,
為坐標(biāo)原點(diǎn),
,
,
橢圓
的方程為
.
證明:(2)設(shè),
,則
的方程
,
由,得
,
,
,
為定值
.
解:(3)設(shè),
,
,由
,得
,①
又點(diǎn)在橢圓上,得:
,②
聯(lián)立①②,得:,
,③
由,得
,
,
,
化簡(jiǎn),得點(diǎn)軌跡方程為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出定理:在圓錐曲線中,是拋物線
的一條弦,
是
的中點(diǎn),過(guò)點(diǎn)
且平行于
軸的直線與拋物線的交點(diǎn)為
.若
兩點(diǎn)縱坐標(biāo)之差的絕對(duì)值
,則
的面積
,試運(yùn)用上述定理求解以下各題:
(1)若,
所在直線的方程為
,
是
的中點(diǎn),過(guò)
且平行于
軸的直線與拋物線
的交點(diǎn)為
,求
;
(2)已知是拋物線
的一條弦,
是
的中點(diǎn),過(guò)點(diǎn)
且平行于
軸的直線與拋物線的交點(diǎn)為
,
分別為
和
的中點(diǎn),過(guò)
且平行于
軸的直線與拋物線
分別交于點(diǎn)
,若
兩點(diǎn)縱坐標(biāo)之差的絕對(duì)值
,求
和
;
(3)請(qǐng)你在上述問(wèn)題的啟發(fā)下,設(shè)計(jì)一種方法求拋物線:與弦
圍成成的“弓形”的面積,并求出相應(yīng)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域是上的連續(xù)函數(shù)
圖像的兩個(gè)端點(diǎn)為
、
,
是圖像
上任意一點(diǎn),過(guò)點(diǎn)
作垂直于
軸的直線
交線段
于點(diǎn)
(點(diǎn)
與點(diǎn)
可以重合),我們稱(chēng)
的最大值為該函數(shù)的“曲徑”,下列定義域是
上的函數(shù)中,曲徑最小的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn)
在線段
上移動(dòng),有下列判斷:①平面
平面
;②平面
平面
;③三棱錐
的體積不變;④
平面
.其中,正確的是______.(把所有正確的判斷的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)
,如果對(duì)任意
,恒有
成立,則稱(chēng)
為
階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)
時(shí),
,求
的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)
時(shí),
,求證:函數(shù)
在
上無(wú)零點(diǎn);
(3)已知函數(shù)為
階縮放函數(shù),且當(dāng)
時(shí),
的取值范圍是
,求
在
上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果實(shí)系數(shù)、
、
和
、
、
都是非零常數(shù).
(1)設(shè)不等式和
的解集分別是
、
,試問(wèn)
是
的什么條件?并說(shuō)明理由.
(2)在實(shí)數(shù)集中,方程和
的解集分別為
和
,試問(wèn)
是
的什么條件?并說(shuō)明理由.
(3)在復(fù)數(shù)集中,方程和
的解集分別為
和
,證明:
是
的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線由兩個(gè)橢圓
:
和橢圓
:
組成,當(dāng)
成等比數(shù)列時(shí),稱(chēng)曲線
為“貓眼曲線”.
(1)若貓眼曲線過(guò)點(diǎn)
,且
的公比為
,求貓眼曲線
的方程;
(2)對(duì)于題(1)中的求貓眼曲線,任作斜率為
且不過(guò)原點(diǎn)的直線與該曲線相交,交橢圓
所得弦的中點(diǎn)為M,交橢圓
所得弦的中點(diǎn)為N,求證:
為與
無(wú)關(guān)的定值;
(3)若斜率為的直線
為橢圓
的切線,且交橢圓
于點(diǎn)
,
為橢圓
上的任意一點(diǎn)(點(diǎn)
與點(diǎn)
不重合),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).其中
是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)在點(diǎn)
處的切線方程;
(2)若不等式對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com