日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)取得極值
          (1)求的單調(diào)區(qū)間(用表示);
          (2)設(shè),,若存在,使得成立,求的取值范圍.
          (1) 見解析  (2)
          第一問利用
          根據(jù)題意取得極值,
          對(duì)參數(shù)a分情況討論,可知
          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: ,
          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: ,
          第二問中, 由(1)知: ,
          ,
           
          從而求解。
          解:
          …..3分
          取得極值, ……………………..4分
          (1) 當(dāng)時(shí) 遞增區(qū)間:    遞減區(qū)間: ,
          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: , ………….6分
          (2)  由(1)知:
          ,
           
          ……………….10分
          , 使成立

             得:
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (理)(14分)設(shè)函數(shù),其中
          (I)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
          (II)求函數(shù)的極值點(diǎn);
          (III)證明對(duì)任意的正整數(shù)n,不等式都成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)上是增函數(shù),在上為減函數(shù).
          (1)求的表達(dá)式;
          (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的值;
          (3)是否存在實(shí)數(shù)使得關(guān)于的方程在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,若存在,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分)已知為直線為常數(shù))及所圍成的圖形的面積,為直線為常數(shù))及所圍成的圖形的面積,(如圖)
          (1)當(dāng)時(shí),求的值。
          (2)若,求的最小值。
            

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)設(shè)
          (1)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;
          (2) 若函數(shù)處取得極小值是,求的值,并說明在區(qū)間內(nèi)函數(shù)
          的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)函數(shù)f(x)=ax2-2(a-1)x-2lnx ,a>0
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)對(duì)于函數(shù)圖像上的不同兩點(diǎn)A(x1,y1),B(x2,y2),如果在函數(shù)圖像上存在點(diǎn)P(x0,y0)(其中x0在x1與x2之間),使得點(diǎn)P處的切線l平行于直線AB,則稱AB存在“伴隨切線”,當(dāng)x0=  時(shí),又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖像上是否存在不同兩點(diǎn)A,B,使得AB存在“中值伴隨切線”?若存在,求出A,B的坐標(biāo);若不存在,說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分18分)已知:函數(shù) ,在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
          (1)求、的值及函數(shù)的解析式;
          (2)若不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍;
          (3)如果關(guān)于的方程有三個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)在區(qū)間上不單調(diào),則實(shí)數(shù)的取值范圍是(   ) .
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù)其中
          (1)求的單調(diào)區(qū)間;
          (2)當(dāng)時(shí),證明不等式:.
          (3)求證:ln(n+1)> +++L).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案