日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn),直線,動(dòng)點(diǎn)P到點(diǎn)F的距離與到直線的距離相等.
          (1)求動(dòng)點(diǎn)P的軌跡C的方程;(2)直線與曲線C交于A,B兩點(diǎn),若曲線C上存在點(diǎn)D使得四邊形FABD為平行四邊形,求b的值.
          (1);(2)。 

          試題分析:(1)顯然動(dòng)點(diǎn)的軌跡滿足拋物線的定義,故用定義去求軌跡方程;(2)法一:由題意知
          故設(shè)直線FD的方程為,與拋物線方程聯(lián)立可得點(diǎn)的橫坐標(biāo),再由拋物線的定義求出,
          把直線的方程與拋物線方程聯(lián)立,再由弦長公式求出的長,是用來表示的,然后令
          可得關(guān)于的方程,從而求出的值;法二:同法一一樣先求出點(diǎn)的坐標(biāo),再把直線的方程與拋物
          線方程聯(lián)立,利用韋達(dá)定理求出兩點(diǎn)的橫坐標(biāo)和與積, 又因?yàn)樗倪呅蜦ABD是平行四邊形,所以
          ,由此可得兩點(diǎn)的橫坐標(biāo)的關(guān)系,結(jié)合韋達(dá)定理得到的結(jié)論找到一個(gè)關(guān)于的方程,
          解方程即可,需根據(jù)點(diǎn)的坐標(biāo)進(jìn)行分情況討論。
          試題解析:(1)依題意,動(dòng)點(diǎn)P的軌跡C是以為焦點(diǎn),為準(zhǔn)線的拋物線, 
          所以動(dòng)點(diǎn)P的軌跡C的方程為
          (2)解法一:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055053870497.png" style="vertical-align:middle;" />,故直線FD的方程為,
          聯(lián)立方程組消元得:
          解得點(diǎn)的橫坐標(biāo)為 , 由拋物線定義知 
          又由 消元得:。
          設(shè),則,
          所以
          因?yàn)镕ABD為平行四邊形,所以 所以,
          解得,代入成立。
          (2)解法二:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055053870497.png" style="vertical-align:middle;" />,故直線FD的方程為
          聯(lián)立方程組消元得:,解得 
          故點(diǎn).
          1)當(dāng)時(shí),設(shè),
          聯(lián)立方程組消元得(*)
          根據(jù)韋達(dá)定理有①, ②  
          又因?yàn)樗倪呅问瞧叫兴倪呅,所?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055054228644.png" style="vertical-align:middle;" />,將坐標(biāo)代入有  ③ 
          代入①有,再代入②有  
          整理得此時(shí)(*)的判別式,符合題意. 
          2)當(dāng)時(shí),同理可解得。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線C: 的焦點(diǎn)為F,ABQ的三個(gè)頂點(diǎn)都在拋物線C上,點(diǎn)M為AB的中點(diǎn),.(1)若M,求拋物線C方程;(2)若的常數(shù),試求線段長的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          【文科】如果雙曲線的焦距等于兩條準(zhǔn)線間距離的4倍,則此雙曲線的離心率為( 。
          A.4B.
          2
          C.
          1
          2
          D.2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          雙曲線x2-
          y2
          16
          =1
          上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于4,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離等于______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知拋物線C: y2 =2px(p>0)的準(zhǔn)線L,過M(l,0)且斜率為的直線與L相交于A,與C的一個(gè)交點(diǎn)為B,若,則p=____      。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若拋物線的焦點(diǎn)為,則的值為(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知點(diǎn)M是拋物線上的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A在圓C:上,則的最小值為__________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          對(duì)于拋物線y2=4x上任意一點(diǎn)Q,點(diǎn)P(a,0)滿足|PQ|≥|a|,則a的取值范圍是(  )
          A.(-∞,0)B.(-∞,2]C.[0,2]D.(0,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          (5分)(2011•廣東)設(shè)圓C與圓x2+(y﹣3)2=1外切,與直線y=0相切,則C的圓心軌跡為(       )
          A.拋物線B.雙曲線C.橢圓D.圓

          查看答案和解析>>

          同步練習(xí)冊(cè)答案