日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè) ,其中 n 為正整數(shù).
          (1)求f(1),f(2),f(3) 的值;
          (2)猜想滿足不等式 f(n)<0 的正整數(shù) n 的范圍,并用數(shù)學歸納法證明你的猜想.

          【答案】
          (1)

          【解答】解:分別把n=1、2、3代入

          求得f(1)=1,


          (2)

          【解答】

          猜想:

          證明:①當 n=3 時, 成立

          ②假設(shè)當n=k 時猜想正確,即

          由于

          ,即 成立

          由①②可知,對 成立


          【解析】本題主要考查了數(shù)學歸納法證明不等式,解決問題的關(guān)鍵是根據(jù)(1)數(shù)學歸納法是一種重要的數(shù)學思想方法,主要用于解決與正整數(shù)有關(guān)的數(shù)學問題;(2)用數(shù)學歸納法證明等式問題,要“先看項”,弄清等式兩邊的構(gòu)成規(guī)律,等式兩邊各有多少項,初始值 是多少;(3)由 時等式成立,推出 時等式成立,一要找出等式兩邊的變化(差異),明確變形目標;二要充分利用歸納假設(shè),進行合理變形,正確寫出證明過程,由于“猜想”是“證明”的前提和“對象”,務(wù)必保證猜想的正確性,同時必須嚴格按照數(shù)學歸納法的步驟書寫.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】(本小題滿分10分)選修4—5:不等式選講

          設(shè)函數(shù)f(x)=|2x﹣7|+1.

          (Ⅰ)求不等式f(x)≤x的解集;

          (Ⅱ)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0.
          (1)判斷直線l與圓C的位置關(guān)系;
          (2)若定點P(1,1)分弦AB為 = ,求此時直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)f(x)是二次函數(shù),其圖象過點(0,1),且在點(-2,f(-2))處的切線方程為2x+y+3=0
          (1)求f(x)的表達式;
          (2)求f(x)的圖象與兩坐標軸所圍成圖形的面積;
          (3)若直線x=-t(0<t<1)把f(x)的圖象與兩坐標軸所圍成圖形的面積二等分,求t的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)f(a)=|x2-a2|dx
          (1)當0≤a≤1與a>1時,分別求f(a);
          (2)當a≥0時,求f(a)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】擬用長度為l的鋼筋焊接一個如圖所示的矩形框架結(jié)構(gòu)(鋼筋體積、焊接點均忽略不計),其中G、H分別為框架梁MN、CD的中點,MN∥CD,設(shè)框架總面積為S平方米,BN=2CN=2x米.

          (1)若S=18平方米,且l不大于27米,試求CN長度的取值范圍;
          (2)若l=21米,求當CN為多少米時,才能使總面積S最大,并求最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點

          (1)求橢圓的方程;

          (2)過點作直線與橢圓交于兩點,連接為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知△ABC的兩條高線所在直線的方程為2x﹣3y+1=0和x+y=0,頂點A(1,2),求:
          (1)BC邊所在直線的方程;
          (2)△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知全集U=R,集合A={x|1≤x<5},B={x|2<x<8},C={x|﹣a<x≤a+3}
          (1)求A∪B,(UA)∩B;
          (2)若C∩A=C,求a的取值范圍.

          查看答案和解析>>

          同步練習冊答案