日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對(duì)于函數(shù)f(x)給出定義:
          設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.
          某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.給定函數(shù) ,請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算
          =

          【答案】2016
          【解析】解:由 ,
          ∴f′(x)=x2﹣x+3,
          所以f″(x)=2x﹣1,由f″(x)=0,得x=
          ∴f(x)的對(duì)稱中心為( ,1),
          ∴f(1﹣x)+f(x)=2,
          故設(shè)f( )+f( )+f( )+…+f( )=m,
          則f( )+f( )+…+f( )=m,
          兩式相加得2×2016=2m,
          則m=2016,
          故答案為:2016.
          由題意對(duì)已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點(diǎn)( ,1)對(duì)稱,即f(x)+f(1﹣x)=2,即可得到結(jié)論.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

          (Ⅱ)討論的單調(diào)性;

          (Ⅲ)若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在一次數(shù)學(xué)競(jìng)賽中,30名參賽學(xué)生的成績(jī)(百分制)的莖葉圖如圖所示:若將參賽學(xué)生按成績(jī)由高到低編為1﹣30號(hào),再用系統(tǒng)抽樣法從中抽取6人,則其中抽取的成績(jī)?cè)赱77,90]內(nèi)的學(xué)生人數(shù)為(

          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
          (1)討論f(x)的單調(diào)性與極值點(diǎn)的個(gè)數(shù);
          (2)當(dāng)a=0時(shí),關(guān)于x的方程f(x)=m(m∈R)有2個(gè)不同的實(shí)數(shù)根x1 , x2 , 證明:x1+x2>2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,菱形ABCD的邊長(zhǎng)為2,∠BAD=60°,M為DC的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),則 的最大值為(

          A.3
          B.2
          C.6
          D.9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
          (Ⅰ)若BE= ,在折疊后的線段AD上是否存在一點(diǎn)P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說(shuō)明理由;
          (Ⅱ)求三棱錐A﹣CDF的體積的最大值,并求此時(shí)二面角E﹣AC﹣F的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直二面角中,四邊形ABCD是邊長(zhǎng)為2的正方形,,FCE上的點(diǎn),且平面ACE

          求證:平面BCE;

          求二面角的余弦值;

          求點(diǎn)D到平面ACE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2+2n;數(shù)列{bn}是公比大于1的等比數(shù)列,且滿足b1+b4=9,b2b3=8.
          (Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
          (Ⅱ)若cn=(﹣1)nSn+anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R
          (1)證明:函數(shù)f(x)=(x﹣a)2lnx,a∈R的圖象恒經(jīng)過(guò)一個(gè)定點(diǎn);
          (2)若函數(shù)h(x)= f′(x)在(0,+∞)有定義,且不等式h(x)≤0在(0,+∞)上有解,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案