日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】嫦娥奔月,舉國(guó)歡慶,據(jù)科學(xué)計(jì)算,運(yùn)載神六長(zhǎng)征二號(hào)系列火箭,在點(diǎn)火第一秒鐘通過(guò)的路程為2 km,以后每秒鐘通過(guò)的路程都增加2 km,在達(dá)到離地面210 km的高度時(shí),火箭與飛船分離,則這一過(guò)程大約需要的時(shí)間是______秒.

          【答案】14

          【解析】

          設(shè)出每一秒鐘的路程為一數(shù)列,由題意可知此數(shù)列為等差數(shù)列,然后根據(jù)等差數(shù)列的前n項(xiàng)和的公式表示出離地面的高度,讓高度等于210列出關(guān)于n的方程,求出方程的解即可得到n的值.

          設(shè)每一秒鐘通過(guò)的路程依次為a1,a2,a3,…,an,

          則數(shù)列{an}是首項(xiàng)a1=2,公差d=2的等差數(shù)列,

          由求和公式有na1+=210,即2n+n(n﹣1)=210,

          解得n=14,

          故答案為:14

          【點(diǎn)睛】

          在解決等差、等比數(shù)列的運(yùn)算問(wèn)題時(shí),有兩個(gè)處理思路,一是利用基本量,將多元問(wèn)題簡(jiǎn)化為一元問(wèn)題,雖有一定量的運(yùn)算,但思路簡(jiǎn)潔,目標(biāo)明確;二是利用等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),應(yīng)有意識(shí)地去應(yīng)用.但在應(yīng)用性質(zhì)時(shí)要注意性質(zhì)的前提條件,有時(shí)需要進(jìn)行適當(dāng)變形. 在解決等差、等比數(shù)列的運(yùn)算問(wèn)題時(shí),經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運(yùn)算量”的方法.

          型】填空
          結(jié)束】
          16

          【題目】已知直線l:+=1,M是直線l上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Mx軸和y軸的垂線,垂足分別為A,B,點(diǎn)P是線段AB的靠近點(diǎn)A的一個(gè)三等分點(diǎn),點(diǎn)P的軌跡方程為______.

          【答案】

          【解析】

          設(shè)P(x,y),則A(x,0),B(0,3y).可得M的坐標(biāo),代入直線1:+=1,可得點(diǎn)P的跡方程.

          設(shè)P(x,y),則A(x,0),B(0,3y).

          ∴M(x,3y).

          代入直線1:+=1,可得

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

          交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

          浮動(dòng)因素

          浮動(dòng)比率

          A1

          上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

          下浮10%

          A2

          上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

          下浮20%

          A3

          上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

          下浮30%

          A4

          上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

          0%

          A5

          上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

          上浮10%

          A6

          上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

          上浮30%

          某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

          類型

          A1

          A2

          A3

          A4

          A5

          A6

          數(shù)量

          10

          5

          5

          20

          15

          5

          (1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

          (2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:

          ①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

          ②若該銷售商一次購(gòu)進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)列{xn}滿足x1=0,xn+1=﹣x2n+xn+c(n∈N*).
          (Ⅰ)證明:{xn}是遞減數(shù)列的充分必要條件是c<0;
          (Ⅱ)求c的取值范圍,使{xn}是遞增數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin()=2
          (Ⅰ)求曲線C和直線l在該直角坐標(biāo)系下的普通方程;
          (Ⅱ)動(dòng)點(diǎn)A在曲線C上,動(dòng)點(diǎn)B在直線l上,定點(diǎn)P的坐標(biāo)為(﹣2,2),求|PB|+|AB|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】等比數(shù)列{an}是遞減數(shù)列,前n項(xiàng)的積為Tn,若T13=4T9,則a8a15=(  )

          A. 2 B. ±2 C. 4 D. ±4

          【答案】A

          【解析】

          由題意可得 q1,且 an 0,由條件可得 a1a2…a13=4a1a2…a9,化簡(jiǎn)得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

          等比數(shù)列{an}是遞增數(shù)列,其前n項(xiàng)的積為Tn(n∈N*),若T13=4T9 ,設(shè)公比為q,

          則由題意可得 q1,且 an >0.

          ∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

          又由等比數(shù)列的性質(zhì)可得 a8a15=a10a13=a11a12,∴a8a15=2.

          故選:A.

          【點(diǎn)睛】

          本題主要考查等比數(shù)列的定義和性質(zhì),求得 a10a11a12a13=4是解題的關(guān)鍵.

          型】單選題
          結(jié)束】
          10

          【題目】若直線y=2x上存在點(diǎn)(x,y)滿足約束條件,則實(shí)數(shù)m的最大值為

          A. -1 B. 1 C. D. 2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】經(jīng)調(diào)查發(fā)現(xiàn),人們長(zhǎng)期食用含高濃度甲基汞的魚(yú)類會(huì)引起汞中毒,其中羅非魚(yú)體內(nèi)汞含量比其它魚(yú)偏高.現(xiàn)從一批數(shù)量很大的羅非魚(yú)中隨機(jī)地抽出15條作樣本,經(jīng)檢測(cè)得各條魚(yú)的汞含量的莖葉圖(以小數(shù)點(diǎn)前的數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉)如圖.《中華人民共和國(guó)環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過(guò)1.0ppm.
          (Ⅰ)檢查人員從這15條魚(yú)中,隨機(jī)抽出3條,求3條中恰有1條汞含量超標(biāo)的概率;
          (Ⅱ)若從這批數(shù)量很大的魚(yú)中任選3條魚(yú),記ξ表示抽到的汞含量超標(biāo)的魚(yú)的條數(shù).以此15條魚(yú)的樣本數(shù)據(jù)來(lái)估計(jì)這批數(shù)量很大的魚(yú)的總體數(shù)據(jù),求ξ的分布列及數(shù)學(xué)期望Eξ.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】菜農(nóng)定期使用低害殺蟲(chóng)農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲(chóng)的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

          y(微克)

          x(千克)

          3

          38

          11

          10

          374

          -121

          -751

          其中

          (I)根據(jù)散點(diǎn)圖判斷,,哪一個(gè)適宜作為蔬菜農(nóng)藥殘量與用水量的回歸方程類型(給出判斷即可,不必說(shuō)明理由);

          (Ⅱ)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程,求出的回歸方程.(c,d精確到0.1)

          (Ⅲ)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時(shí)對(duì)人體無(wú)害,為了放心食用該蔬菜,請(qǐng)估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))

          附:參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列命題中,正確的是________(填序號(hào)).

          ①若分別是平面α,β的一個(gè)法向量,則α∥β;

          ②若,分別是平面α,β的一個(gè)法向量,則α⊥β·=0;

          ③若是平面α的一個(gè)法向量,與平面α共面,則·=0;

          ④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=sin2x+sinxcosx.
          (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
          (Ⅱ)當(dāng)x∈[0,]時(shí),求函數(shù)f(x)的值域.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案