日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知P為曲線C上任一點,若P到點F的距離與P到直線距離相等

          (1)求曲線C的方程;

          (2)若過點(1,0)的直線l與曲線C交于不同兩點A、B,

          (I)若,求直線l的方程;

          (II)試問在x軸上是否存在定點E(a,0),使恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.

           

          【答案】

          (1)(2)(I)(II)a=0定值為-1

          【解析】本試題主要是考查了拋物線的方程的求解,以及直線與拋物線的位置關(guān)系的綜合運(yùn)用。

          (1)根據(jù)拋物線的定義可知點F(-,0)為拋物線的焦點,x=為其準(zhǔn)線,設(shè)出拋物線的方程,根據(jù)焦點坐標(biāo)求得p,則拋物線方程可得.

          (2)設(shè)A(x1,y1),B(x2,y2),假設(shè)存在點M(a,2)滿足條件,根據(jù)題意把A,B坐標(biāo)代入,同時根據(jù)拋物線方程可知x1和y1,x2和y2的關(guān)系,把直線與拋物線方程聯(lián)立消去x,利用韋達(dá)定理表示出y1+y2和y1y2,代入方程③中,求得a的值,推斷出出存在點M滿足題意.

          解:(1)說明曲線C為拋物線 ( 或解  )-------------2分

          得出方程:----------------4分

          (2)(I)設(shè),聯(lián)立

          ---------5分

          ,   --------9分

          ((II)假設(shè)存在E(m,0),

            ------10分

           -------13分

          恒為定值所以a=0定值為-1-------15分

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點F(1,0),直線L:x=-1,P為平面上的動點,過點P作直線L的垂線,垂足為Q,且
          QP
          QF
          =
          FP
          FQ

          (1)求點P的軌跡C的方程;
          (2)是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有
          FA
          FB
          <0
          ?若存在,求出m的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知平面上一定點C(2,O)和直線l:x=8,P為該平面上一動點,作PQ⊥l,垂足為Q,且(
          PC
          +
          1
          2
          PQ
          )•(
          PC
          -
          1
          2
          PQ
          )=0

          (1)問點P在什么曲線上?并求出該曲線的方程;
          (2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知平面上一定點C(2,O)和直線l:x=8,P為該平面上一動點,作PQ⊥l,垂足為Q,且(
          PC
          +
          1
          2
          PQ
          )•(
          PC
          -
          1
          2
          PQ
          )=0

          (1)問點P在什么曲線上?并求出該曲線的方程;
          (2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷C(四)(解析版) 題型:解答題

          已知平面上一定點C(2,O)和直線l:x=8,P為該平面上一動點,作PQ⊥l,垂足為Q,且
          (1)問點P在什么曲線上?并求出該曲線的方程;
          (2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案