設(shè)函數(shù)

,其中

為常數(shù).
(1)當(dāng)

時(shí),判斷函數(shù)

在定義域上的單調(diào)性;
(2)若函數(shù)

的有極值點(diǎn),求

的取值范圍及

的極值點(diǎn);
(3)求證對(duì)任意不小于3的正整數(shù)

,不等式

都成立.
(1)函數(shù)

在定義域

上單調(diào)遞增.
(2)當(dāng)且僅當(dāng)

時(shí)

有極值點(diǎn);當(dāng)

時(shí),

有唯一最小值點(diǎn)

;當(dāng)

時(shí),

有一個(gè)極大值點(diǎn)

和一個(gè)極小值點(diǎn)
(3)證明見解析。
(1)由題意知,

的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133305957422.gif" style="vertical-align:middle;" />,

…… 1分

當(dāng)

時(shí),

,函數(shù)

在定義域

上單調(diào)遞增. …… 2分
(2)①由(Ⅰ)得,當(dāng)

時(shí),

函數(shù)

無極值點(diǎn).
………3分
②當(dāng)

時(shí),

有兩個(gè)不同解,



時(shí),

,

此時(shí)

,

隨

在定義域上的變化情況如下表:
由此表可知:

時(shí),

有唯一極小值點(diǎn)

, …… 5分
ii) 當(dāng)

時(shí),0<

<1 此時(shí),

,

隨

的變化情況如下表:
由此表可知:

時(shí),

有一個(gè)極大值

和一個(gè)極小值點(diǎn)

;綜上所述:當(dāng)且僅當(dāng)

時(shí)

有極值點(diǎn);當(dāng)

時(shí),

有唯一最小值點(diǎn)

;當(dāng)

時(shí),

有一個(gè)極大值點(diǎn)

和一個(gè)極小值點(diǎn)

…… 8分
(3)由(2)可知當(dāng)

時(shí),函數(shù)

,
此時(shí)

有唯一極小值點(diǎn)

且

…… 9分
…… 11分
令函數(shù)


…… 12分

…… 14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)設(shè)函

數(shù)


(1)當(dāng)

時(shí),求

的極值;(2)當(dāng)

時(shí),求

的單調(diào)區(qū)間;(3若對(duì)任意

及

,恒有

成立,求

的取值范圍

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
(1)

(2)是否存在實(shí)數(shù)m,使函數(shù)

恰有四個(gè)不同的零點(diǎn)?若存在求出的m范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)

在兩個(gè)極值點(diǎn)

,且

。
(Ⅰ)求

滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫出滿足這些條件的點(diǎn)

的區(qū)域;

(II)證明:

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

(1)若

在

上是減函數(shù),求

的最大值;
(2)若

的單調(diào)遞減區(qū)間是

,求函數(shù)y=

圖像過點(diǎn)

的切線與兩坐標(biāo)軸圍成圖形的面積。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

單調(diào)遞減,
(I)求a的值;
(II)是否存在實(shí)數(shù)b,使得函數(shù)

的圖象恰有3個(gè)交點(diǎn),若

的取值范圍數(shù)b的值;若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

,在(-∞,-1),(2,+∞)上單調(diào)遞增,在(-1,2)上單調(diào)遞減,當(dāng)且僅當(dāng)x>4時(shí),

.
(Ⅰ)求函數(shù)
f(x)的解析式;
(Ⅱ)若函數(shù)

與函數(shù)
f(x)、g(x)的圖象共有3個(gè)交點(diǎn),求
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知三次函數(shù)

在

和

時(shí)取極值,且

.
(Ⅰ) 求函數(shù)

的表達(dá)式;
(Ⅱ)求函數(shù)

的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)

在區(qū)間

上的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133141592292.gif" style="vertical-align:middle;" />,試求

、n應(yīng)滿足的條件。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題

=" " ( )
查看答案和解析>>