【題目】在直角坐標系中,圓
的參數(shù)方程為
(
為參數(shù)),以
為極點,
軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求的極坐標方程和直線
的直角坐標方程;
(2)射線與圓
的交點為
,
,與直線
的交點為
,求
的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)存在極大值與極小值,且在
處取得極小值.
(1)求實數(shù)的值;
(2)若函數(shù)有兩個零點,求實數(shù)
的取值范圍.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點
,右焦點
是拋物線
的焦點.
(1)求橢圓的方程;
(2)已知動直線過右焦點
,且與橢圓
分別交于
,
兩點.試問
軸上是否存在定點
,使得
恒成立?若存在求出點
的坐標:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)估計該公司投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 1 | 3 | 4 | 7 |
表中的數(shù)據(jù)顯示,x與y之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計算y關(guān)于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計公式分別為,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若直線l:x+y=0與圓C交于A,B兩點,求弦AB的長;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓N與圓M關(guān)于直線
對稱.
(1)求圓N的方程.
(2)是否存在過點P的無窮多對互相垂直的直線和
,使得
被圓M截得的弦長與
被圓N截得的弦長相等?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
.
(Ⅰ)當(dāng)時,求曲線
在
處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對于任意
,總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點與雙曲線
的焦點重合,并且經(jīng)過點
.
(Ⅰ)求橢圓C的標準方程;
(II) 設(shè)橢圓C短軸的上頂點為P,直線不經(jīng)過P點且與
相交于
、
兩點,若直線PA與直線PB的斜率的和為
,判斷直線
是否過定點,若是,求出這個定點,否則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com