【題目】設(shè)函數(shù),則下列結(jié)論錯誤的是( )
A. f(x)的一個周期為-2π
B. y=f(x)的圖象關(guān)于直線x=對稱
C. f(x+π)的一個零點為x=
D. f(x)在單調(diào)遞減
【答案】D
【解析】對于A選項,因為f(x)=cos的周期為2kπ(k∈Z),所以f(x)的一個周期為-2π,A項正確.對于B選項,因為f(x)=cos
圖象的對稱軸為直線x=kπ-
(k∈Z),所以y=f(x)的圖象關(guān)于直線x=
對稱,B項正確.對于C選項,f(x+π)=cos
.令x+
=kπ+
(k∈Z),得x=kπ-
,當k=1時,x=
,所以f(x+π)的一個零點為x=
,C項正確.對于D選項,因為f(x)=cos
的遞減區(qū)間為(2kπ-
,2kπ+
) (k∈Z),遞增區(qū)間為(2kπ+
,2kπ+
)(k∈Z),所以
是減區(qū)間,(
,π)是增區(qū)間,D項錯誤.故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-.
(1)判斷函數(shù)的奇偶性,并證明;
(2)用單調(diào)性的定義證明函數(shù)f(x)=2x-在(0,+∞)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計結(jié)果如下表所示.
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分服從正態(tài)分布
,
近似為這1000人得分的平均值值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示),請用正態(tài)分布的知識求
;
(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案::
(。┑梅植坏陀的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
(ⅱ)每次獲贈送的隨機話費和對應(yīng)的概率為:
贈送的隨機話費(單元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
現(xiàn)有市民甲要參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費,求
的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
,若
,則
①;
②;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標平面中, 的兩個頂點為
,平面內(nèi)兩點
、
同時滿足:①
;②
;③
.
(1)求頂點的軌跡
的方程;
(2)過點作兩條互相垂直的直線
,直線
與點
的軌跡
相交弦分別為
,設(shè)弦
的中點分別為
.
①求四邊形的面積
的最小值;
②試問:直線是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,且
,過點
的直線與橢圓
交于
,
兩點,
的周長為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)試問:是否存在定點,使得
為定值?若存在,求
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù).
(1)求不等式的解集;
(2)若不等式對任意實數(shù)
成立,求實數(shù)
的取值范圍;
(3)設(shè)函數(shù),若
在
上有零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校、
兩個班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差
①班數(shù)學(xué)興趣小組的平均成績高于
班的平均成績
②班數(shù)學(xué)興趣小組的平均成績高于
班的平均成績
③班數(shù)學(xué)興趣小組成績的標準差大于
班成績的標準差
④班數(shù)學(xué)興趣小組成績的標準差大于
班成績的標準差
其中正確結(jié)論的編號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得).
(1)求函數(shù)的解析式及其定義域;
(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面
底面
,底面
是平行四邊形,
,
,
,
為
的中點,點
在線段
上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線
與平面
所成的角和直線
與平面
所成的角相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com