日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

          1求該曲線C的直角坐標(biāo)系方程及離心率

          2已知點(diǎn)為曲線C上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值。

          【答案】1;(2.

          【解析】

          試題分析:1知曲線C的極坐標(biāo)方程為可化為直角坐標(biāo)系方程,由于在橢圓方程中,故可求出離心率;(2因?yàn)橹本的極坐標(biāo)方程為,所以直線的直角坐標(biāo)系方程為,法一:因?yàn)榍C的參數(shù)方程為為參數(shù),所以可設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)到直線的距離為,所以當(dāng),即時(shí), .法二:設(shè)與直線平行且與曲線C相切的直線為,聯(lián)立消去整理得,令,當(dāng)時(shí),切點(diǎn)到直線的距離最大.

          試題解析:解:1知曲線C的極坐標(biāo)方程為可化為直角坐標(biāo)系方程 ..3分

          由于在橢圓方程中 ..4分

          故離心率 ..6分

          2因?yàn)橹本的極坐標(biāo)方程為

          所以直線的直角坐標(biāo)系方程為 ..8分

          法一:因?yàn)榍C的參數(shù)方程為為參數(shù),所以可設(shè)點(diǎn)的坐標(biāo)為 ..9分

          則點(diǎn)到直線的距離為 ..11分

          所以當(dāng) ..12分

          時(shí), ..13分

          法二:設(shè)與直線平行且與曲線C相切的直線為 ..8分

          聯(lián)立消去整理得 ..10分

          ,令 ..11分

          當(dāng)時(shí),切點(diǎn)到直線的距離最大為 ..13分.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在(0,+∞)的函數(shù)fx)滿足如下三個(gè)條件:

          ①對(duì)于任意正實(shí)數(shù)a、b,都有fab)=fa)+fb)-1;

          f(2)=0;

          x>1時(shí),總有fx)<1.

          (1)求f(1)及的值;

          (2)求證:函數(shù)fx)在(0,+∞)上是減函數(shù);

          (3)如果存在正數(shù)k,使關(guān)于x的方程fkx)+f(2-x)=-1有解,求正實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|3≤3x≤27},B={x|log2x>1}.

          (1)分別求AB,(RA)∪(RB);

          (2)已知集合C={x|axa2+1},若CA,求滿足條件的實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為a的菱形ABCD中,,E,FPAAB的中點(diǎn)。

          (1)求證: EF||平面PBC ;

          (2)求E到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 ,已知過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于、兩點(diǎn).

          (1)寫出曲線和直線的直角坐標(biāo)方程.

          (2)若 , 成等比數(shù)列,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=ln(1+x).
          (1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=g(x),當(dāng)x≥0時(shí),f(x)≤ ,求t的最小值;
          (2)當(dāng)n∈N*時(shí),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線)與軸交于點(diǎn),動(dòng)圓與直線相切,并且與圓相外切,

          1)求動(dòng)圓的圓心的軌跡的方程;

          2)若過原點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),問是否存在以為直徑的圓經(jīng)過點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          1)若,求函數(shù)的極值;

          2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

          3)若對(duì)內(nèi)任意一個(gè),都有 成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C ,直線與拋物線C交于A,B兩點(diǎn).

          1)若直線過拋物線C的焦點(diǎn),求.

          2)已知拋物線C上存在關(guān)于直線對(duì)稱的相異兩點(diǎn)MN,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案