日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知某幾何體的三視圖如圖2所示(小正方形的邊長為),則該幾何體的外接球的表面積為( )

          A. B. C. D.

          【答案】A

          【解析】分析:首先根據(jù)題中所給的三視圖,還原幾何體,得到該幾何體是由正方體切割而成的,找到該幾何體的頂點有三個是正方體的棱的中點,一個就是正方體的頂點,之后將幾何體補(bǔ)體,從而得到該三棱錐的外接球是補(bǔ)成的棱柱的外接球,利用公式求得結(jié)果.

          詳解根據(jù)題中所給的三視圖,可以將幾何體還原,可以得到該幾何體是由正方體切割而成的,記正方體是,

          則記的中點為E,CD中點為F,中點為G,

          題中所涉及的幾何體就是三棱錐,

          經(jīng)過分析,將幾何體補(bǔ)體,

          取棱中點H,再取正方體的頂點,

          從而得到該三棱錐的外接球即為直三棱柱的外接球,

          利用正弦定理可以求得底面三角形的外接圓的半徑為,

          棱柱的高為4,所以可以求得其外接球的半徑,

          所以其表面積為故選A.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,均是邊長為2的等邊三角形,點中點,平面平面.

          (1)證明:平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.

          (1)求證:AB∥平面EFGH

          (2)AB4,CD6,求四邊形EFGH周長的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

          A. yx具有正的線性相關(guān)關(guān)系

          B. 回歸直線過樣本點的中心(,

          C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

          D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,,,且,EPD中點.

          I)求證:平面ABCD

          II)求二面角B-AE-C的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線的左、右焦點分別為,、分別是雙曲線左、右兩支上關(guān)于坐標(biāo)原點對稱的兩點,且直線的斜率為.分別為、的中點,若原點在以線段為直徑的圓上,則雙曲線的離心率為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          (1)當(dāng)時,若函數(shù)處的切線與函數(shù)相切,求實數(shù)的值;

          (2)當(dāng)時,記.證明:當(dāng)時,存在,使得.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,已知四邊形BCDE為直角梯形,,且,ABE的中點沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐

          求證

          平面ABCD

          求二面角的大小;

          在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出定義:若(其中為整數(shù)),則叫做離實數(shù)最近的整數(shù),記作,即.設(shè)函數(shù),二次函數(shù),若函數(shù)的圖象有且只有一個公共點,則的取值不可能是(

          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案