【題目】如圖,在三棱柱中,
平面
,
是
的中點(diǎn),
,
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求平面與平面
所成銳二面角的平面角的余弦值.
【答案】(Ⅰ)證明見解析,(Ⅱ)
【解析】
(Ⅰ)連結(jié)交
于點(diǎn)
,連結(jié)
,可知
,根據(jù)線面平行的判定定理,證明即可.
(Ⅱ)法一: 由,
,可知
,即
,根據(jù)
平面
,可知
平面
,即
,
,以
為原點(diǎn),
,
,
所在直線分別為
,
,
軸,建立空間直角坐標(biāo)系,求各點(diǎn)坐標(biāo),計(jì)算平面
的法向量為
,平面
的法向量為
,根據(jù)
,求解即可. 法二:延長(zhǎng)
、
交于
,連接
,過
作
于
,過
作
于
,連接
,則
平面
,
,又
,所以
平面
,
為平面
與平面
所成銳二面角的平面角. 由
,
,
,計(jì)算
,
,利用
,求解,即可.
(Ⅰ)證明:連結(jié)交
于點(diǎn)
,連結(jié)
.
則為
中點(diǎn),
為
中位線.
所以.
又平面
,
平面
.
所以平面
.
(Ⅱ)法一:因?yàn)?/span>,
是
的中點(diǎn),所以
.
又因?yàn)?/span>,所以
,則
即,所以
.
又因?yàn)?/span>平面
,所以建立如圖所示空間直角坐標(biāo)系
,則
,
,
,
,
.
平面的法向量為
.
設(shè)平面的法向量為
,則由
,
,得
令,則
,
.
所以平面與平面
所成的銳二面角
的余弦值為
.
法二:延長(zhǎng)、
交于
,連接
,過
作
于
,
過作
于
,連接
,
則平面
,
,又
,所以
平面
,
為平面
與平面
所成銳二面角的平面角.
中,
,所以高
為中線,
,
,
∵,∴
,∴
,
中,
,
,∴
中,
,
,
所以平面與平面
所成銳二面角的平面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至
處有兩種路徑.一種是從
沿直線步行到
,另一種是先從
沿索道乘纜車到
,然后從
沿直線步行到
.現(xiàn)有甲、乙兩位游客從
處下山,甲沿
勻速步行,速度為
.在甲出發(fā)
后,乙從
乘纜車到
,在
處停留
后,再?gòu)?/span>
勻速步行到
,假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為
,山路
長(zhǎng)為1260
,經(jīng)測(cè)量
,
.
(1)求索道的長(zhǎng);
(2)問:乙出發(fā)多少后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時(shí)間不超過
,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).
(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);
(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直二面角α﹣l﹣β中,A∈α,B∈β,A,B都不在l上,AB與α所成角為x,AB與β所成角為y,AB與l所成角為z,則cos2x+cos2y+sin2z的值為( 。
A.B.2C.3D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,焦距是實(shí)軸長(zhǎng)的倍且過點(diǎn)(4,﹣
)
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;
(3)在(2)條件下,若M F2交雙曲線另一點(diǎn)N,求△F1MN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在
上存在極大值,求
的取值范圍;
(2)若軸是曲線
的一條切線,證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月18日-27日,第七屆世界軍人運(yùn)動(dòng)會(huì)在湖北武漢舉辦,中國(guó)代表團(tuán)共獲得133金64銀42銅,共239枚獎(jiǎng)牌.為了調(diào)查各國(guó)參賽人員對(duì)主辦方的滿意程度,研究人員隨機(jī)抽取了500名參賽運(yùn)動(dòng)員進(jìn)行調(diào)查,所得數(shù)據(jù)如下所示,現(xiàn)有如下說法:①在參與調(diào)查的500名運(yùn)動(dòng)員中任取1人,抽到對(duì)主辦方表示滿意的男性運(yùn)動(dòng)員的概率為;②在犯錯(cuò)誤的概率不超過1%的前提下可以認(rèn)為“是否對(duì)主辦方表示滿意與運(yùn)動(dòng)員的性別有關(guān)”;③沒有99.9%的把握認(rèn)為“是否對(duì)主辦方表示滿意與運(yùn)動(dòng)員的性別有關(guān)”;則正確命題的個(gè)數(shù)為( )附:
男性運(yùn)動(dòng)員 | 女性運(yùn)動(dòng)員 | |||||
對(duì)主辦方表示滿意 | 200 | 220 | ||||
對(duì)主辦方表示不滿意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場(chǎng)調(diào)查,某商品每噸的價(jià)格為萬(wàn)元時(shí),該商品的月供給量為
噸,
;月需求量為
噸,
,當(dāng)該商品的需求量大于供給量時(shí),銷售量等于供給量;當(dāng)該商品的需求量不大于供給量時(shí),銷售量等于需求量,該商品的月銷售額等于月銷售量與價(jià)格的乘積.
(1)已知,若某月該商品的價(jià)格為x=7,求商品在該月的銷售額(精確到1元);
(2)記需求量與供給量相等時(shí)的價(jià)格為均衡價(jià)格,若該商品的均衡價(jià)格不低于每噸6萬(wàn)元,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
的參數(shù)方程為
(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)求的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com