日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)求的單調(diào)區(qū)間;

          (2)若,求證:函數(shù)只有一個(gè)零點(diǎn),且.

          【答案】)函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是當(dāng)時(shí),. 所以,函數(shù)的單調(diào)遞減區(qū)間是當(dāng)時(shí),,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;()證明見解析

          【解析】

          試題()先求出函數(shù)的定義域,求出函數(shù)的導(dǎo)數(shù),再令,求得解,

          討論當(dāng)時(shí)及,列出函數(shù)的變化情況得到函數(shù)的單調(diào)區(qū)間

          )當(dāng)時(shí),由()知,函數(shù)的極小值,極大值,并且極小值與極大值均大于0,又由函數(shù)是減函數(shù),可得至多有一個(gè)零點(diǎn),又由可得函數(shù)只有一個(gè)零點(diǎn),且,得到證明

          試題解析:()解:的定義域?yàn)?/span>.

          ,

          當(dāng)時(shí),,函數(shù)的變化情況如下表:

          所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

          當(dāng)時(shí),. 所以,函數(shù)的單調(diào)遞減區(qū)間是

          當(dāng)時(shí),,函數(shù)的變化情況如下表:

          所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

          )證明:當(dāng)時(shí),由()知,的極小值為,極大值為.

          因?yàn)?/span>且又由函數(shù)是減函數(shù),可得至多有一個(gè)零點(diǎn). 又因?yàn)?/span>,所以 函數(shù)只有一個(gè)零點(diǎn),且.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在梯形中, , .將沿折起至,使得平面平面(如圖2), 為線段上一點(diǎn).

          圖1 圖2

          (Ⅰ)求證: ;

          (Ⅱ)若為線段中點(diǎn),求多面體與多面體的體積之比;

          (Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長.若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某大學(xué)導(dǎo)師計(jì)劃從自己所培養(yǎng)的研究生甲、乙兩人中選一人,參加雄安新區(qū)某部門組織的計(jì)算機(jī)技能大賽,兩人以往5次的比賽成績(jī)統(tǒng)計(jì)如下:(滿分100分,單位:分).

          第一次

          第二次

          第三次

          第四次

          第五次

          甲的成績(jī)

          87

          87

          84

          100

          92

          乙的成績(jī)

          100

          80

          85

          95

          90

          (1)試比較甲、乙二人誰的成績(jī)更穩(wěn)定;

          (2)在一次考試中若兩人成績(jī)之差的絕對(duì)值不大于2,則稱兩人“實(shí)力相當(dāng)”.若從上述5次成績(jī)中任意抽取2次,求恰有一次兩人“實(shí)力相當(dāng)”的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓的離心率為,且過點(diǎn).

          (1)求橢圓的方程;

          (2)設(shè)為橢圓上任一點(diǎn), 為其右焦點(diǎn), 是橢圓的左、右頂點(diǎn),點(diǎn)滿足.

          ①證明: 為定值;

          ②設(shè)是直線上的任一點(diǎn),直線分別另交橢圓兩點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)A(–1,2),B(2,8)以及,=–13,求點(diǎn)C、D的坐標(biāo)和的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】—般地,若函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,則稱的“倍跟隨區(qū)間”;特別地,若函數(shù)的定義域?yàn)?/span>,值域也為,則稱的“跟隨區(qū)間”.下列結(jié)論正確的是( )

          A.的跟隨區(qū)間,則

          B.函數(shù)不存在跟隨區(qū)間

          C.若函數(shù)存在跟隨區(qū)間,則

          D.二次函數(shù)存在“3倍跟隨區(qū)間”

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓和橢圓 是橢圓的左焦點(diǎn)

          )求橢圓的離心率和點(diǎn)的坐標(biāo);

          點(diǎn)在橢圓上,過軸的垂線,交圓于點(diǎn)不重合),是過點(diǎn)的圓的切線.圓的圓心為點(diǎn),半徑長為試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個(gè)無公害蔬菜大棚,每個(gè)大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設(shè)甲大棚的資金投入為(單位:萬元),每年兩個(gè)大棚的總收入為(單位:萬元).

          1)求的值;

          2)試問如何安排甲、乙兩個(gè)大棚的資金投入,才能使總收入最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有下列說法

          ①互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件

          ②演繹推理是從特殊到一般的推理,它的一般模式是“三段論”

          ③殘差圖的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高

          ④若,則事件互斥且對(duì)立

          ⑤甲乙兩艘輪船都要在某個(gè)泊位停靠4小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),則這兩艘船中至少有一艘在?坎次粫r(shí)必須等待的概率為

          其中正確的說法是______(寫出全部正確說法的序號(hào)).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案