日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐中,平面平面,//,,
          ,且,.
          (1)求證:平面
          (2)求和平面所成角的正弦值;
          (3)在線段上是否存在一點(diǎn)使得平面平面,請說明理由.

          (1)證明過程詳見解析;(2);(3)在線段上存在一點(diǎn)使得平面平面.

          解析試題分析:本題主要考查線線垂直、線面垂直、面面垂直、線面角、向量法等基礎(chǔ)知識,考查學(xué)生的空間想象能力、邏輯推理能力、計(jì)算能力、轉(zhuǎn)化能力.第一問,在中,求出,在中,求出, 在中,三邊符合勾股定理,所以, 利用面面垂直的性質(zhì),得平面; 第二問,利用第一問的證明得到垂直關(guān)系,建立空間直角坐標(biāo)系,得到平面BDF和平面CDE中各點(diǎn)的坐標(biāo),得出向量坐標(biāo),先求出平面CDE的法向量,利用夾角公式求BE和平面CDE所成的角的正弦值;第三問,假設(shè)存在F,使得,用表示,求出平面BEF的法向量,由于兩個平面垂直,則兩個法向量垂直,則, 解出.
          (1)由,.,
          可得
          ,且,
          可得

          所以
          又平面平面,
          平面 平面 ,
          平面,
          所以平面.             5分
          (2)如圖建立空間直角坐標(biāo)系,

          ,,,,
          ,
          設(shè)是平面的一個法向量,則,,
           
          ,則
          設(shè)直線與平面所成的角為,

          所以和平面所成的角的正弦值.           10分
          (3)設(shè),
          ,.

          設(shè)是平面一個法向量,則,
           
          ,則
          若平面平面,則,即

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖(1),在三角形ABC中,BA=BC=2√乏,ZABC=900,點(diǎn)0,M,N分別為線段的中點(diǎn),將AABO和AMNC分別沿BO,MN折起,使平面ABO與平面CMN都與底面OMNB垂直,如圖(2)所示.
          (1)求證:AB//平面CMN;
          (2)求平面ACN與平面CMN所成角的余
          (3)求點(diǎn)M到平面ACN的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖1,直角梯形中,,分別為邊上的點(diǎn),且,.將四邊形沿折起成如圖2的位置,使
          (1)求證:平面;
          (2)求平面與平面所成銳角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,所在平面互相垂直,且,E、F分別為AC、DC的中點(diǎn).
          (1)求證:;
          (2)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐中,,,平面⊥平面是線段上一點(diǎn),,
          (1)證明:⊥平面;
          (2)若,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知四棱錐P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中點(diǎn)。
          (1)求證:AC⊥平面BDE;
          (2)若直線PA與平面PBC所成角為30°,求二面角P-AD-C的正切值;
          (3)求證:直線PA與平面PBD所成的角φ為定值,并求sinφ值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (2013•天津)如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
          AA1=AB=2,E為棱AA1的中點(diǎn).
          (1)證明B1C1⊥CE;
          (2)求二面角B1﹣CE﹣C1的正弦值.
          (3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,設(shè)是一個高為的四棱錐,底面是邊長為的正方形,頂點(diǎn)在底面上的射影是正方形的中心.是棱的中點(diǎn).試求直線與平面所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          已知空間中線段AB的兩個端點(diǎn)坐標(biāo)分別是A(3,5,—7),B(—2,4,3),則線段AB在坐標(biāo)平面YOZ上的射影的長度為。

          查看答案和解析>>