日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,橢圓C:+=1的焦點在x軸上,左右頂點分別為A1,A,上頂點為B,拋物線C1,C2分別以A,B為焦點,其頂點均為坐標原點O,C1C2相交于直線y=x上一點P.

          (1)求橢圓C及拋物線C1,C2的方程.

          (2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-,0),·的最小值.

           

          (1) 橢圓C:+=1 C1:y2=16x C2:x2=4y (2)

          【解析】(1)由題意A(a,0),B(0,),設拋物線C1的方程為y2=4ax,拋物線C2的方程為x2=4y,P(8,8),∴橢圓C:+=1.

          拋物線C1:y2=16x,

          拋物線C2:x2=4y.

          (2)(1)得直線OP的斜率為,

          ∴直線l的斜率k=-,

          設直線l:y=-x+b,

          消去y,

          5x2-8bx+8b2-16=0.

          ∵動直線l與橢圓C交于不同的兩點,

          ∴Δ=128b2-20(8b2-16)>0.

          -<b<.

          M(x1,y1),N(x2,y2),

          x1+x2=,x1x2=.

          y1y2=(-x1+b)(-x2+b)

          =x1x2-(x1+x2)+b2=.

          =(x1+,y1),=(x2+,y2),

          ·=(x1+)(x2+)+y1y2

          =x1x2+(x1+x2)+2+y1y2

          =,

          -<b<,

          ∴當b=-,·取得最小值,其最小值為

          ×(-)2+×(-)-=-.

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十七第十章第四節(jié)練習卷(解析版) 題型:選擇題

          給出以下三個命題:

          ①將一枚硬幣拋擲兩次,記事件A:兩次都出現(xiàn)正面,事件B:兩次都出現(xiàn)反面,則事件A與事件B是對立事件;②在命題①中,事件A與事件B是互斥事件;③在10件產(chǎn)品中有3件是次品,從中任取3,記事件A:所取3件中最多有2件是次品,事件B:所取3件中至少有2件是次品,則事件A與事件B是互斥事件.其中真命題的個數(shù)是(  )

          (A)0 (B)1 (C)2 (D)3

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)八十一選修4-5第三節(jié)練習卷(解析版) 題型:解答題

          已知實數(shù)a,b,c滿足a+b+c=2,a2+2b2+c2的最小值.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十四第八章第五節(jié)練習卷(解析版) 題型:解答題

          已知橢圓C:+=1(a>b>0).

          (1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程.

          (2)(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

          (3)過原點O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點,設原點O到四邊形PQSR一邊的距離為d,試求d=1a,b滿足的條件.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十四第八章第五節(jié)練習卷(解析版) 題型:選擇題

          如圖,已知點B是橢圓+=1(a>b>0)的短軸位于x軸下方的端點,B作斜率為1的直線交橢圓于點M,Py軸上,PMx,·=9,若點P的坐標為(0,t),t的取值范圍是(  )

          (A)0<t<3 (B)0<t3

          (C)0<t< (D)0<t

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十六第八章第七節(jié)練習卷(解析版) 題型:填空題

          以拋物線x2=16y的焦點為圓心,且與拋物線的準線相切的圓的方程為_________.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十六第八章第七節(jié)練習卷(解析版) 題型:選擇題

          設拋物線y2=8x上一點Py軸的距離是4,則點P到該拋物線焦點的距離是(  )

          (A)4 (B)6 (C)8 (D)12

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十五第八章第六節(jié)練習卷(解析版) 題型:解答題

          已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點P(4,-).

          (1)求雙曲線的方程.

          (2)若點M(3,m)在雙曲線上,求證:·=0.

          (3)求△F1MF2的面積.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:解答題

          已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.

          (1)求實數(shù)a,b間滿足的等量關系.

          (2)求線段PQ長的最小值.

          (3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.

           

          查看答案和解析>>

          同步練習冊答案