日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給定橢圓C:+=1(a>b>0),稱圓心在原點O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.

          (1)求橢圓C的方程和其“準(zhǔn)圓”的方程.

          (2)P是橢圓C的“準(zhǔn)圓”上的一個動點,過動點P作直線l1,l2使得l1,l2與橢圓C都只有一個交點,l1,l2分別交其“準(zhǔn)圓”于點M,N.

          ①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點時,l1,l2的方程;

          ②求證:|MN|為定值.

           

          (1) +y2=1 x2+y2=4

          (2) y=x+2,y=-x+2 ②見解析

          【解析】(1)c=,a=,b=1.

          ∴橢圓方程為+y2=1,

          準(zhǔn)圓方程為x2+y2=4.

          (2)①因為準(zhǔn)圓x2+y2=4y軸正半軸的交點為P(0,2),

          設(shè)過點P(0,2)且與橢圓有一個公共點的直線為y=kx+2,所以由消去y,

          (1+3k2)x2+12kx+9=0.

          因為橢圓與y=kx+2只有一個公共點,

          所以Δ=144k2-4×9(1+3k2)=0,解得k=±1.

          所以l1,l2的方程分別為y=x+2,y=-x+2.

          ()當(dāng)l1,l2中有一條無斜率時,不妨設(shè)l1無斜率,

          因為l1與橢圓只有一個公共點,

          則其方程為x=±.

          當(dāng)l1方程為x=,

          此時l1與準(zhǔn)圓交于點(,1),(,-1),

          此時經(jīng)過點(,1)((,-1))且與橢圓只有一個公共點的直線是y=1(y=-1),

          l2y=1(y=-1),顯然直線l1,l2垂直;

          同理可證l1方程為x=-,直線l1,l2垂直.

          ()當(dāng)l1,l2都有斜率時,設(shè)點P(x0,y0),

          其中+=4.

          設(shè)經(jīng)過點P(x0,y0)與橢圓只有一個公共點的直線為y=t(x-x0)+y0,

          消去y,

          (1+3t2)x2+6t(y0-tx0)x+3(y0-tx0)2-3=0.

          由Δ=0化簡整理得:(3-)t2+2x0y0t+1-=0.

          因為+=4,

          所以有(3-)t2+2x0y0t+(-3)=0.

          設(shè)l1,l2的斜率分別為t1,t2,

          因為l1,l2與橢圓只有一個公共點,

          所以t1,t2滿足上述方程(3-)t2+2x0y0t+(-3)=0,

          所以t1·t2=-1,l1,l2垂直.

          綜合()():因為l1,l2經(jīng)過點P(x0,y0),

          又分別交其準(zhǔn)圓于點M,N,l1,l2垂直,

          所以線段MN為準(zhǔn)圓x2+y2=4的直徑,

          所以|MN|=4.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:解答題

          已知橢圓C:+=1(a>b>0).

          (1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程.

          (2)(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.

          (3)過原點O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1a,b滿足的條件.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:解答題

          已知雙曲線的中心在原點,焦點F1,F2在坐標(biāo)軸上,離心率為,且過點P(4,-).

          (1)求雙曲線的方程.

          (2)若點M(3,m)在雙曲線上,求證:·=0.

          (3)求△F1MF2的面積.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:填空題

          C:x2+y2+2x-2y-2=0的圓心到直線3x+4y+14=0的距離是    .

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

          若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點均在第二象限內(nèi),a的取值范圍為(  )

          (A)(-,-2) (B)(-,-1)

          (C)(1,+) (D)(2,+)

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:填空題

          設(shè)P為橢圓+=1(a>b>0)上的任意一點,F1為橢圓的一個焦點,|PF1|的取值范圍為     .

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十三第八章第四節(jié)練習(xí)卷(解析版) 題型:解答題

          已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.

          (1)求實數(shù)a,b間滿足的等量關(guān)系.

          (2)求線段PQ長的最小值.

          (3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:解答題

          已知橢圓的中心為坐標(biāo)原點,短軸長為2,一條準(zhǔn)線的方程為l:x=2.

          (1)求橢圓的標(biāo)準(zhǔn)方程.

          (2)設(shè)O為坐標(biāo)原點,F是橢圓的右焦點,M是直線l上的動點,過點FOM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

          如圖,單擺從某點開始來回擺動,離開平衡位置O的距離Scm和時間ts的函數(shù)關(guān)系式為S=6sin(2πt+),那么單擺來回擺動一次所需的時間為(  )

          (A)2πs (B)πs (C)0.5s (D)1s

           

          查看答案和解析>>

          同步練習(xí)冊答案