【題目】設(shè)橢圓長軸長為4,右焦點(diǎn)
到左頂點(diǎn)的距離為3.
(1)求橢圓的方程;
(2)設(shè)過原點(diǎn)的直線交橢圓于
兩點(diǎn)(
不在坐標(biāo)軸上),連接
并延長交橢圓于點(diǎn)
,若
,求四邊形
面積的最大值.
【答案】(1);(2)
【解析】
(1)根據(jù)題意,列出的方程組,求解即可求得結(jié)果;
(2)設(shè)出直線方程,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,用參數(shù)表示
的面積;根據(jù)向量關(guān)系,求得
,再利用對勾函數(shù)單調(diào)性求面積關(guān)于參數(shù)的函數(shù)的最大值即可.
(1)由題意可得,
所以橢圓方程為.
(2)由(1)知,
設(shè)直線的方程為
,
聯(lián)立得
.
設(shè),
,
則,
.
因?yàn)?/span>,
故可得四邊形為平行四邊形,則
,
又,
故.
設(shè),
,
則,
令,故可得
,
當(dāng)時,
恒成立,故
在
單調(diào)遞增,
故在
上單調(diào)遞減,
所以當(dāng),即
時,
四邊形的面積取得最大值
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,
,
分別為
的左、右頂點(diǎn).
(1)求的方程;
(2)若點(diǎn)在
上,點(diǎn)
在直線
上,且
,
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的連續(xù)函數(shù)f(x)滿足f(x)=f(2﹣x),導(dǎo)函數(shù)為f′(x).當(dāng)x>1時,2f(x)+(x﹣1)f′(x)>0,且f(﹣1),則不等式f(x)<6(x﹣1)﹣2的解集為( )
A.(﹣1,1)∪(1,4)B.(﹣1,1)∪(1,3)
C.(,1)∪(1,2)D.(
,1)∪(1,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前
項(xiàng)中的最大項(xiàng)為
,最小項(xiàng)為
,設(shè)
.
(1)若,求數(shù)列
的通項(xiàng)公式;
(2)若,求數(shù)列
的前
項(xiàng)和
;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)分別為
,
,
,過點(diǎn)
的直線與橢圓相交于點(diǎn)
,
兩點(diǎn)(兩點(diǎn)均在
軸的上方),且
,
(1)若,求橢圓的方程;
(2)直線的斜率;
(3)求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是直角梯形,
,
,
,
,
,
.以
為折痕將
折起,使點(diǎn)
到達(dá)
的位置,且
,如圖2.
(1)證明:平面平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( 。
A. 回答該問卷的總?cè)藬?shù)不可能是100個
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)有兩個極值點(diǎn)
(
),若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com