某開(kāi)發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買(mǎi)一塊土地建一幢寫(xiě)字樓,規(guī)劃要求寫(xiě)字樓每層建筑面積為2000平方米.已知該寫(xiě)字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.
(1)若該寫(xiě)字樓共x層,總開(kāi)發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的表達(dá)式;(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)
(2)要使整幢寫(xiě)字樓每平方米的平均開(kāi)發(fā)費(fèi)用最低,該寫(xiě)字樓應(yīng)建為多少層?
(1);(2)30.
解析試題分析:(1)經(jīng)審題,先算出第一層樓的建筑費(fèi)用,由條件“從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.”可知,各樓層的建筑費(fèi)用成等差數(shù)列,首項(xiàng)為第一層的建筑費(fèi)用,公差為(萬(wàn)元),再根據(jù)等差數(shù)列前
項(xiàng)和公式可得出總開(kāi)發(fā)費(fèi)用的函數(shù)
的表達(dá)式;(2)由(1)知每平方米的平均開(kāi)發(fā)費(fèi)用為
元,構(gòu)造函數(shù)
,并由基本不等式求出函數(shù)
的最小值,注意自變量
是正整數(shù).
試題解析:(1)由已知,寫(xiě)字樓最下面一層的總建筑費(fèi)用為:(元)
(萬(wàn)元),
從第二層開(kāi)始,每層的建筑總費(fèi)用比其下面一層多:(元)
(萬(wàn)元),
寫(xiě)字樓從下到上各層的總建筑費(fèi)用構(gòu)成以800為首項(xiàng),20為公差的等差數(shù)列,
所以函數(shù)表達(dá)式為:. 6分
(2)由(1)知寫(xiě)字樓每平方米平均開(kāi)發(fā)費(fèi)用為:(元). 10分
當(dāng)且僅當(dāng)時(shí),即
時(shí)等號(hào)成立.
答:該寫(xiě)字樓建為30層時(shí),每平方米平均開(kāi)發(fā)費(fèi)用最低. 12分
考點(diǎn):1.函數(shù)建模;2.基本不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中
為常數(shù).
(Ⅰ)若函數(shù)在區(qū)間
上單調(diào),求
的取值范圍;
(Ⅱ)若對(duì)任意,都有
成立,且函數(shù)
的圖象經(jīng)過(guò)點(diǎn)
,
求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)時(shí)下,網(wǎng)校教學(xué)越越受到廣大學(xué)生的喜愛(ài),它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷(xiāo)售量(單位:千套)與銷(xiāo)售價(jià)格
(單位:元/套)滿足的關(guān)系式
,其中
,
為常數(shù).已知銷(xiāo)售價(jià)格為4元/套時(shí),每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資、辦公等所有開(kāi)銷(xiāo)折合為每套題2元(只考慮銷(xiāo)售出的套數(shù)),試確定銷(xiāo)售價(jià)格的值,使網(wǎng)校每日銷(xiāo)售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)市場(chǎng)調(diào)查,某種商品在過(guò)去50天的銷(xiāo)售量和價(jià)格均為銷(xiāo)售時(shí)間t(天)的函數(shù),且銷(xiāo)售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N).前30天價(jià)格為g(t)=t+30(1≤t≤30,t∈N),后20天價(jià)格為g(t)=45(31≤t≤50,t∈N).
(1)寫(xiě)出該種商品的日銷(xiāo)售額S與時(shí)間t的函數(shù)關(guān)系;
(2)求日銷(xiāo)售額S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,一種醫(yī)用輸液瓶可以視為兩個(gè)圓柱的組合體.開(kāi)始輸液時(shí),滴管內(nèi)勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內(nèi)液體忽略不計(jì).
(1)如果瓶?jī)?nèi)的藥液恰好分鐘滴完,問(wèn)每分鐘應(yīng)滴下多少滴?
(2)在條件(1)下,設(shè)輸液開(kāi)始后(單位:分鐘),瓶?jī)?nèi)液面與進(jìn)氣管的距離為
(單位:厘米),已知當(dāng)
時(shí),
.試將
表示為
的函數(shù).(注:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若存在實(shí)數(shù)對(duì)(
),使得等式
對(duì)定義域中的每一個(gè)
都成立,則稱函數(shù)
是“(
)型函數(shù)”.
(Ⅰ)判斷函數(shù)是否為 “(
)型函數(shù)”,并說(shuō)明理由;
(Ⅱ)若函數(shù)是“(
)型函數(shù)”,求出滿足條件的一組實(shí)數(shù)對(duì)
;,
(Ⅲ)已知函數(shù)是“(
)型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)
為
.當(dāng)
時(shí),
,若當(dāng)
時(shí),都有
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)畫(huà)出的圖象;
(Ⅱ)設(shè)A=求集合A;
(Ⅲ)方程有兩解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)流速度(單位:千米/小時(shí))是車(chē)流密度
(單位:輛/千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)40輛/千米時(shí),車(chē)流速度為80千米/小時(shí).研究表明:當(dāng)
時(shí),車(chē)流速度
是車(chē)流密度
的一次函數(shù).(1)當(dāng)
時(shí),求函數(shù)
的表達(dá)式;
(2)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位: 輛/小時(shí))f
,
可以達(dá)到最大,并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com