日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知.
          (1)時(shí),求的極值
          (2)當(dāng)時(shí),討論的單調(diào)性。
          (3)證明:,,其中無(wú)理數(shù)
          解:
          (1)令,知在區(qū)間上單調(diào)遞
          單調(diào)遞減,在單調(diào)遞增。
          故有極大值,極小值。
          (2)當(dāng)時(shí),上單調(diào)遞減,單調(diào)遞增,單調(diào)遞減
          當(dāng)時(shí),單調(diào)遞減
          當(dāng)時(shí),上單調(diào)遞減,單調(diào)遞增,單調(diào)遞減
          (3)由(Ⅰ)當(dāng)時(shí),上單調(diào)遞減。
          當(dāng)時(shí)
          ,即
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,)上單調(diào)遞減,在(,上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          若曲線,則點(diǎn)P的坐標(biāo)為
          A.(1,0)B.(1,5)C.(1, D.(,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題滿分14分)已知函數(shù)(常數(shù).
          (Ⅰ) 當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
          (Ⅱ)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù) ()(為自然對(duì)數(shù)的底數(shù))
          (1)求的極值
          (2)對(duì)于數(shù)列,   ()
          ①  證明:
          ② 考察關(guān)于正整數(shù)的方程是否有解,并說(shuō)明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分13分)已知,函數(shù).
          (1)當(dāng)時(shí)討論函數(shù)的單調(diào)性;
          (2)當(dāng)取何值時(shí),取最小值,證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)
          已知函數(shù).
          (1)求的極值;
          (2)若上恒成立,求的取值范圍;
          (3)已知,且,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知,則的值為___▲___

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          不等式恒成立,則的最小值為             .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案