【題目】已知函數(shù);
(1)當時,若
,求
的取值范圍;
(2)若定義在上的奇函數(shù)
滿足
,且當
,
,求
在
上的解析式;
(3)對于(2)中的,若關(guān)于
的不等式
在
上恒成立,求實數(shù)
的取值范圍.
【答案】(1);(2)
;(3)
【解析】
(1)根據(jù)對數(shù)函數(shù)的真數(shù)部分大于0,及對數(shù)的運算性質(zhì),可將不等式化為,且
且
,解不等式組可得
的取值范圍;
(2)利用奇偶性得出,
,轉(zhuǎn)化得出當
時,
,當
時,根據(jù)函數(shù)的奇偶性求解即可.
(3)關(guān)于的不等式關(guān)于
的不等式
在
上恒成立,等價于
在
上恒成立,即
,分類討論后,綜合討論結(jié)果,可得實數(shù)
的取值范圍.
解:(1)原不等式可化為,
,且
,且
,
得.
(2),
,
所以的周期為:4,
當
時,
,
當
時,
,
定義在
上的奇函數(shù)
,
,即
,
當
時,
,
當
時,
,
當
時,
,
(3)關(guān)于
的不等式
在
上恒成立,
記
,
關(guān)于
的不等式
在
上恒成立,
在
上恒成立,
當時,
,
,即
解得
.
當,即
時,
,
,即
滿足條件;
當時,
,
由在
上恒成立,
得,
解得
.
綜上所述,實數(shù)的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】盡管目前人類還無法準確預(yù)報地震,但科學家通過研究,已經(jīng)對地震有所了解,例如,地震釋放出的能量(單位:焦耳)與地震里氏震級
之間的關(guān)系為
.
(1)已知地震等級劃分為里氏級,根據(jù)等級范圍又分為三種類型,其中小于
級的為“小地震”,介于
級到
級之間的為“有感地震”,大于
級的為“破壞性地震”若某次地震釋放能量約
焦耳,試確定該次地震的類型;
(2)2008年汶川地震為里氏級,2011年日本地震為里氏
級,問:2011年日本地震所釋放的能量是2008年汶川地震所釋放的能量的多少倍? (取
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:y=x+4,動圓⊙O:x2+y2=r2(1<r<2),菱形ABCD的一個內(nèi)角為60°,頂點A、B在直線l上,頂點C、D在⊙O上.當r變化時,求菱形ABCD的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某輛汽車以千米
小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求
時,每小時的油耗(所需要的汽油量)為
升,其中
為常數(shù),且
.
(1)若汽車以120千米小時的速度行駛時,每小時的油耗為11.5升,欲使每小時的油耗不超過9升,求
的取值范圍;
(2)求該汽車行駛100千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線y=ax+1和拋物線y2=4x相交于不同的A,B兩點.
(Ⅰ)若a=-2,求弦長|AB|;
(Ⅱ)若以AB為直徑的圓經(jīng)過原點O,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(
,
,
)的部分圖像如圖所示.
(1)求函數(shù)的解析式及
圖像的對稱軸方程;
(2)把函數(shù)圖像上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移
個單位,得到函數(shù)
的圖象,求關(guān)于x的方程
在
時所有的實數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】,
,…,
是一個數(shù)列,對每個
,
,
.如果
,
兩數(shù)不同,寫
;如果
,
兩數(shù)相同,寫
.于是得到一個新數(shù)列
,
,…,
,其中
.重復上述方法,得到一個由0及1兩個數(shù)字組成的三角形數(shù)表,最后一行僅一個數(shù)字,求這張數(shù)字表中1的和的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】類似于平面直角坐標系,定義平面斜坐標系:設(shè)數(shù)軸、
的交點為
,與
、
軸正方向同向的單位向量分別是
、
,且
與
的夾角為
,其中
,由平面向量基本定理:對于平面內(nèi)的向量
,存在唯一有序?qū)崝?shù)對
,使得
,把
叫做點
在斜坐標系
中的坐標,也叫做向量
在斜坐標系
中的坐標,記為
,在平面斜坐標系內(nèi),直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標系內(nèi)相應(yīng)概念以相同方式定義,如
時,方程
表示斜坐標系內(nèi)一條過點
,且方向向量為
的直線.
(1)若,
,
,求
;
(2)若,已知點
和直線
;
①求的一個法向量;
②求點到直線
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)現(xiàn)有一個直角梯形水產(chǎn)養(yǎng)殖區(qū)ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在點P處有一燈塔(如圖),且點P到BC,CD的距離都是1200m,現(xiàn)擬將養(yǎng)殖區(qū)ACD分成兩塊,經(jīng)過燈塔P增加一道分隔網(wǎng)EF,在△AEF內(nèi)試驗養(yǎng)殖一種新的水產(chǎn)品,當△AEF的面積最小時,對原有水產(chǎn)品養(yǎng)殖的影響最小.設(shè)AE=d.
(1)若P是EF的中點,求d的值;
(2)求對原有水產(chǎn)品養(yǎng)殖的影響最小時的d的值,并求△AEF面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com