【題目】已知函數(shù)
(1)當(dāng)a=-2時,求函數(shù)f(x)的極值;
(2)若ln[e(x+1)]≥2- f(-x)對任意的x∈[0,+∞)成立,求實(shí)數(shù)a的取值范圍.
【答案】(1)不存在極大值,極小值為 (2)
【解析】
(1)將代入函數(shù)解析式,求得導(dǎo)函數(shù)
后結(jié)合函數(shù)
的單調(diào)區(qū)間,求得
的極值.(2)化簡題目所給不等式為
對任意
成立,構(gòu)造函數(shù)
,利用導(dǎo)數(shù)研究
的單調(diào)性、最值,由此求得
的取值范圍.
(1)當(dāng)時,
,則
,令
,解得
,當(dāng)
時,
,
遞減,當(dāng)
時,
,
遞增,所以
在
處取得極小值
,無極大值.
(2)由于,所以
,又因?yàn)?/span>
對任意的
成立,化簡得
對任意
成立.構(gòu)造函數(shù)
,
,令
,即
,構(gòu)造函數(shù)
,
,當(dāng)
時,
,所以
在
上遞增,當(dāng)
時,
.
當(dāng)即
時,
,此時
在
上遞增,
符合題意.
當(dāng)即
時,存在唯一實(shí)數(shù)
,使
,且當(dāng)
時,
,當(dāng)
時,
,而
,故當(dāng)
時,
不符合題意.
綜上所述,實(shí)數(shù)的取值范圍是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日晷是中國古代用來測定時間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測定時間.把地球看成一個球(球心記為O),地球上一點(diǎn)A的緯度是指OA與地球赤道所在平面所成角,點(diǎn)A處的水平面是指過點(diǎn)A且與OA垂直的平面.在點(diǎn)A處放置一個日晷,若晷面與赤道所在平面平行,點(diǎn)A處的緯度為北緯40°,則晷針與點(diǎn)A處的水平面所成角為( )
A.20°B.40°
C.50°D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
為
的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時,
(i)求曲線在點(diǎn)
處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)時,求證:對任意的
,且
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,
,
,
,
,
,E是
的中點(diǎn).現(xiàn)將
沿
翻折,使點(diǎn)A移動至平面
外的點(diǎn)P.
(1)若,求證:
平面
;
(2)若平面平面
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論
極值點(diǎn)的個數(shù);
(2)若函數(shù)有兩個零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(x+)(A>0,>0,0<<)的部分圖象如圖所示,又函數(shù)g(x)=f(x+).
(1)求函數(shù)g(x)的單調(diào)增區(qū)間;
(2)設(shè)ABC的內(nèi)角ABC的對邊分別為abc,又c=
,且銳角C滿足g(C)= -1,若sinB=2sinA,,求ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且曲線
在
處的切線斜率為1.
(1)求實(shí)數(shù)的值;
(2)證明:當(dāng)時,
;
(3)若數(shù)列滿足
,且
,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了治療某種疾病,某科研機(jī)構(gòu)研制了甲、乙兩種新藥,為此進(jìn)行白鼠試驗(yàn).試驗(yàn)方案如下:每一輪選取兩只白鼠對藥效進(jìn)行對比試驗(yàn).對于兩只白鼠,隨機(jī)選一只施以甲藥,另一只施以乙藥一輪的治療結(jié)果得出后,再安排下一輪試驗(yàn).4輪試驗(yàn)后,就停止試驗(yàn).甲、乙兩種藥的治愈率分別是和
.
(1)若,求2輪試驗(yàn)后乙藥治愈的白鼠比甲藥治愈的白鼠多1只的概率;
(2)已知A公司打算投資甲、乙這兩種新藥的試驗(yàn)耗材費(fèi)用,甲藥和乙藥一次試驗(yàn)耗材花費(fèi)分別為3千元和千元,每輪試驗(yàn)若甲、乙兩種藥都治愈或都沒有治愈,則該科研機(jī)構(gòu)和A公司各承擔(dān)該輪試驗(yàn)耗材總費(fèi)用的50%;若甲藥治愈,乙藥未治愈,則A公司承擔(dān)該輪試驗(yàn)耗材總費(fèi)用的75%,其余由科研機(jī)構(gòu)承擔(dān),若甲藥未治愈,乙藥治愈,則A公司承擔(dān)該輪試驗(yàn)耗材總費(fèi)用的25%,其余由科研機(jī)構(gòu)承擔(dān).以A公司每輪支付試驗(yàn)耗材費(fèi)用的期望為標(biāo)準(zhǔn),求A公司4輪試驗(yàn)結(jié)束后支付試驗(yàn)耗材最少費(fèi)用為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)若在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com