日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)= (b<0)的值域是[1,3],
          (1)求b、c的值;
          (2)判斷函數(shù)F(x)=lgf(x),當x∈[-1,1]時的單調(diào)性,并證明你的結(jié)論;
          (3)若t∈R,求證:lgF(|t|-|t+|)≤lg.
          (1) c=2,b=-2  (2)見解析  (3) 見解析
          (1)由已知中函數(shù)的值域是[1,3],利用判別式法,我們可以構(gòu)造出一個關(guān)于b,c的方程組,解方程組即可得到b,c的值;
          (2)由(1)的結(jié)論我們易給出函數(shù)F(x)=lgf(x)的解析式,利用作差法,我們可以判斷出F(x1)與F(x2)的大小,結(jié)合函數(shù)單調(diào)性的定義,我們易判斷出函數(shù)F(x)=lgf(x)在[-1,1]上的單調(diào)性.
          (3)根據(jù)函數(shù)的單調(diào)性得到不等式的證明,。
          (1)解:設(shè)y=,則(y-2)x2bx+yc="0" ①
          x∈R,∴①的判別式Δ≥0,即b2-4(y-2)(yc)≥0,
          即4y2-4(2+c)y+8c-b2≤0   ②                                                      
          由條件知,不等式②的解集是[1,3]
          ∴1,3是方程4y2-4(2+c)y+8c-b2=0的兩根
          c=2,b=-2,b=2(舍)
          (2)任取x1,x2∈[-1,1],且x2x1,則x2x1>0,且
          (x2x1)(1-x1x2)>0,
          f(x2)-f(x1)=->0,
          f(x2)>f(x1),lgf(x2)>lgf(x1),即F(x2)>F(x1)
          F(x)為減函數(shù).

          即-u,根據(jù)F(x)的單調(diào)性知
          F(-)≤F(u)≤F(),∴l(xiāng)gF(|t|-|t+|)≤lg對任意實數(shù)t成立.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分12分)
          為二次函數(shù),-1和3是方程的兩根,
          (1)求的解析式;
          (2)若在區(qū)間上,不等式有解,求實數(shù)m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設(shè)函數(shù)是定義在上的偶函數(shù),當時,是實數(shù))。
          (1)當時,求f(x)的解析式;
          (2)若函數(shù)f(x)在(0,1]上是增函數(shù),求實數(shù)的取值范圍;
          (3)是否存在實數(shù),使得當時,f(x)有最大值1.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          已知函數(shù)對于滿足的任意,給出下列結(jié)論:
          ;                  ②;
          .       ④
          其中正確結(jié)論的個數(shù)有(    )        
          A.①③B.②④C.②③D.①④

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設(shè)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足: 恒有,求:
          (Ⅰ);
          (Ⅱ)若,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          若函數(shù)上單增,則的取值范圍為( )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          已知函數(shù) 為奇函數(shù),若函數(shù)在區(qū)間上單調(diào)遞增,則的取值范圍是
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          已知函數(shù)上的奇函數(shù),且當,
          函數(shù)>,則實數(shù)的取值范圍是
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設(shè)函數(shù)
          (I)設(shè);
          (II)求的單調(diào)區(qū)間;
          (III)當恒成立,求實數(shù)t的取值范圍。

          查看答案和解析>>