日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).

             (1)證明PA//平面BDE;    

             (2)求二面角B—DE—C的平面角的余弦值;

             (3)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.

          (Ⅰ)證明見(jiàn)解析(Ⅱ)(Ⅲ)存在


          解析:

          (1)以D為坐標(biāo)原點(diǎn),分別以DA、DC、DP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,設(shè)PD=DC=2,則A(2,0,0),P(0,0,2),E(0,1,1),…………2分

          B(2,2,0)   

          設(shè) 是平面BDE的一個(gè)法向量,

          則由       ………………4分

              …………5分

          (2)由(Ⅰ)知是平面BDE的一個(gè)法向量,又是平面DEC的一個(gè)法向量.                                       ………………7分

          設(shè)二面角B—DE—C的平面角為,由圖可知

          故二面角B—DE—C的余弦值為           ………………10分

          (3)∵

          假設(shè)棱PB上存在點(diǎn)F,使PB⊥平面DEF,設(shè)

          ,

                 ………………13分

                      ………………14分

          即在棱PB上存在點(diǎn)F,PB,使得PB⊥平面DEF                    ………………15分

          用幾何法證明酌情給分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
          E是PC的中點(diǎn).求證:
          (Ⅰ)CD⊥AE;
          (Ⅱ)PD⊥平面ABE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
          (1)求證:AD⊥PB;
          (2)求三棱錐P-MBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
          2
          ,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
          (1)求證:PD⊥AC;
          (2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
          AE
          AP
          的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
          3
          ,點(diǎn)F是PB中點(diǎn).
          (Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
          (Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
          (Ⅲ)若BE=
          3
          3
          ,求直線PA與平面PDE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
          2
          ,設(shè)PC與AD的夾角為θ.
          (1)求點(diǎn)A到平面PBD的距離;
          (2)求θ的大。划(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案