日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知P是直線l:3x-4y+11=0上的動點,PA,PB是圓x2y2-2x-2y+1=0的兩條切線(AB是切點),C是圓心,那么四邊形PACB的面積的最小值是(  )

          A. B. 2 C. D. 2

          【答案】C

          【解析】

          把圓的方程化為標準方程為(x﹣1)2+(y﹣1)2=1,則可知直線與圓相離.S四邊形PACBSPAC+SPBC,當|PC|取最小值時,|PA|=|PB|取最小值,即SPACSPBC取最小值,由此能夠求出四邊形PACB面積的最小值.

          :把圓的方程化為標準方程為(x﹣1)2+(y﹣1)2=1,則可知直線與圓相離.

          如圖,S四邊形PACBSPAC+SPBC

          SPAC|PA||CA||PA|,

          SPBC|PB||CB||PB|,

          又|PA|,|PB|,

          ∴當|PC|取最小值時,|PA|=|PB|取最小值,

          SPACSPBC取最小值,此時,CPl,|CP|2,

          SPACSPBC,即四邊形PACB面積的最小值是

          故選:C

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          Ⅰ)求函數(shù)的最小值和最小正周期;

          Ⅱ)已知內(nèi)角的對邊分別為,且,若向量共線,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè){an}是等比數(shù)列,則下列結(jié)論中正確的是( )

          A. 若a1=1,a5=4,則a3=﹣2

          B. 若a1+a3>0,則a2+a4>0

          C. 若a2>a1,則a3>a2

          D. 若a2>a1>0,則a1+a3>2a2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(1)已知x>0,y>0,x+y+xy=8,則x+y的最小值?

          (2)已知不等式的解集為{x|a≤x<b},點(a,b)在直線mx+ny+1=0上,其中m,n>0,若對任意滿足條件的m,n,恒有成立,則λ的取值范圍?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左右兩個焦點為,離心率為,過點.

          (1)求橢圓C的標準方程;

          (2)設(shè)直線與橢圓C相交于兩點,橢圓的左頂點為,連接并延長交直線兩點 ,分別為的縱坐標,且滿足.求證:直線過定點.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某校從參加高一年級期末考試的學生中抽出40名學生,將其成績分成六段[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

          (1)求第四小組的頻率

          (2)估計這次考試的平均分和中位數(shù)(精確到0.01);

          (3)從成績是40~50分及90~100分的學生中選兩人,記他們的成績分別為,求滿足“”的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù) ,
          (1)若 ,求函數(shù) 處的切線方程
          (2)設(shè)函數(shù) ,求 的單調(diào)區(qū)間.
          (3)若存在 ,使得 成立,求 的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中,底面是菱形,且,點是棱的中點,平面與棱交于點

          (1)求證:;

          (2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項和,則使得Sn達到最大值的n是(
          A.21
          B.20
          C.19
          D.18

          查看答案和解析>>

          同步練習冊答案