【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分別為棱AB,BC的中點,M為棱AA1的中點.
(1)證明:A1B1⊥C1D;
(2)若AA1=4,求三棱錐A﹣MDE的體積.
【答案】(1)證明見解析(2)
【解析】
(1)通過證明AB⊥CD,AB⊥CC1,證明A1B1⊥平面CDC1,然后證明A1B1⊥C1D;
(2)求出底面△DCE的面積,求出對應(yīng)的高,即點到底面DCE的距離,然后求解四面體M-CDE的體積,由三棱錐A﹣MDE的體積就是三棱錐M﹣CDE的體積得結(jié)論.
(1)證明:∵∠ACB=90°,AC=BC=2,
∴AB⊥CD,AB⊥CC1,CD∩CC1=C,
∴AB⊥平面CDC1,
∵A1B1∥AB,∴A1B1⊥平面CDC1,
∵C1D平面CDC1,
∴A1B1⊥C1D;
(2)解:三棱錐A﹣MDE的體積就是三棱錐M﹣CDE的體積,
AC=BC=2,D,E分別為棱AB,BC的中點,
M為棱AA1的中點.AA1=4,所以AM=2,AB⊥CD,
三棱錐A﹣MDE的體積:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
的參數(shù)方程為
,(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù),
為實數(shù)),直線
與曲線
交于
兩點.
(1)若,求
的長度;
(2)當(dāng)面積取得最大值時(
為原點),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),(
為常數(shù)),
.曲線
在點
處的切線與
軸平行
(1)求的值;
(2)求的單調(diào)區(qū)間和最小值;
(3)若對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),(
為常數(shù)),
.曲線
在點
處的切線與
軸平行
(1)求的值;
(2)求的單調(diào)區(qū)間和最小值;
(3)若對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若展開式中前三項系數(shù)成等差數(shù)列,求:
(1)展開式中含x的一次冪的項;
(2)展開式中所有x 的有理項;
(3)展開式中系數(shù)最大的項。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
的離心率為
,過橢圓右焦點
作兩條互相垂直的弦
與
.當(dāng)直線
的斜率為
時,
.
(1)求橢圓的方程;
(2)求由,
,
,
四點構(gòu)成的四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為
,
.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于
,
兩點,
與直線
交于點M,且點P,M均在第四象限.若
的面積是
面積的2倍,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com