日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 求函數(shù)f(x)=x3-12x+8在區(qū)間[-3,3]上的最大值與最小值.
          分析:由f(x)=x3-12x+8,知f′(x)=3x2-12,令f′(x)=3x2-12=0,得x1=-2,x2=2.由此能求出函數(shù)f(x)=x3-12x+8在區(qū)間[-3,3]上的最大值與最小值.
          解答:解:∵f(x)=x3-12x+8,
          ∴f′(x)=3x2-12,
          令f′(x)=3x2-12=0,得x1=-2,x2=2.
          ∵x1=-2,x2=2都在區(qū)間[-3,3]內(nèi),
          且f(-3)=(-3)3-12×(-3)+8=17,
          f(-2)=(-2)3-12×(-2)+8=24,
          f(2)=23-12×2+8=-6,
          f(3)=33-12×3+8=11.
          ∴函數(shù)f(x)=x3-12x+8在區(qū)間[-3,3]上的最大值為24,最小值為-6.
          點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最大值和最小值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于定義在R上的函數(shù)f(x),可以證明點(diǎn)A(m,n)是f(x)圖象的一個(gè)對(duì)稱點(diǎn)的充要條件是f(m-x)+f(m+x)=2n,x∈R.
          (1)求函數(shù)f(x)=x3+3x2圖象的一個(gè)對(duì)稱點(diǎn);
          (2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
          (3)試寫出函數(shù)y=f(x)的圖象關(guān)于直線X=M對(duì)稱的充要條件(不用證明);利用所學(xué)知識(shí),研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對(duì)稱性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)求函數(shù)y=
          1
          (1-3x)4
          的導(dǎo)數(shù).
          (2)求函數(shù)f(x)=
          x3,x∈[0,1]
          x2,x∈(1,2]
          2x,x∈(2,3]
          在區(qū)間[0,3]上的積分.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知a為常數(shù),求函數(shù)f(x)=x3-3ax(0≤x≤1)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (文)求函數(shù)f(x)=x3-2x2+5在區(qū)間[-2,2]上的最值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案