日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=﹣ x2+(a﹣1)x+lnx.
          (1)若a>﹣1,求函數(shù)f(x)的單調區(qū)間;
          (2)若g(x)= x2+(1﹣2a)x+f(x)有且只有兩個零點,求實數(shù)a的取值范圍.

          【答案】
          (1)解:f(x)=﹣ x2+(a﹣1)x+lnx,(x>0),

          f′(x)=﹣ax+(a﹣1)+ = ,

          0<﹣a<1即﹣1<a<0時,﹣ >1,

          令f′(x)>0,解得:x>﹣ 或0<x<1,

          令f′(x)<0,解得:1<x<﹣

          ∴f(x)在(0,1)遞增,在(1,﹣ )遞減,在(﹣ ,+∞)遞增,

          ﹣a≤0即a≥0時,﹣ax﹣1<0,

          令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,

          ∴f(x)在(0,1)遞增,在(1,+∞)遞減;


          (2)解:若g(x)= x2+(1﹣2a)x+f(x)有且只有兩個零點,

          即lnx=ax有且只有兩個零點,

          即h(x)=lnx,y=ax有且只有2個交點,

          由h(x)=lnx的圖象與直線y=ax有兩交點

          可知;a>0,

          當直線與h(x)=lnx相切時,設切點(x0,lnx0

          ∵h′(x)= ,

          ∴根據(jù)切線的斜率與導數(shù)值的關系可知: =a,即x0= ,

          代入直線方程可得;ln =1,解得:a=

          所以函數(shù)h(x)=lnx的圖象與直線y=ax有兩交點,

          則0<a<


          【解析】(1)求出函數(shù)的導數(shù),通過討論a的范圍,解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;(2)由h(x)=lnx的圖象與直線y=ax有兩交點可知;a>0,再根據(jù)導數(shù)求出切線的斜率,即可求出有2個交點時a的范圍.
          【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調性的相關知識點,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減才能正確解答此題.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某市教育局委托調查機構對本市中小學學校使用“微課掌上通”滿意度情況進行調查.隨機選擇小學和中學各50所學校進行調查,調查情況如表:

          評分等級

          ☆☆

          ☆☆☆

          ☆☆☆☆

          ☆☆☆☆☆

          小學

          2

          7

          9

          20

          12

          中學

          3

          9

          18

          12

          8

          (備注:“☆”表示評分等級的星級,例如“☆☆☆”表示3星級.)
          (1)從評分等級為5星級的學校中隨機選取兩所學校,求恰有一所學校是中學的概率;
          (2)規(guī)定:評分等級在4星級以上(含4星)為滿意,其它星級為不滿意.完成下列2×2列聯(lián)表并幫助判斷:能否在犯錯誤的概率不超過0.05的前提下認為使用是否滿意與學校類別有關系?

          學校類型

          滿意

          不滿意

          總計

          小學

          50

          中學

          50

          總計

          100

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4—4:坐標系與參數(shù)方程

          (Ⅰ)若圓x2y2=4在伸縮變換 (λ>0)的作用下變成一個焦點在x軸上,且離心率為的橢圓,求λ的值;

          (Ⅱ)在極坐標系中,已知點A(2,0),點P在曲線Cρ上運動,求PA兩點間的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對于集合A={x|x=m2﹣n2 , m∈Z,n∈Z},因為16=52﹣32 , 所以16∈A,研究下列問題:
          (1)1,2,3,4,5,6六個數(shù)中,哪些屬于A,哪些不屬于A,為什么?
          (2)討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個普通的結論,不必證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=1+2sinxcosx+2cos2x.
          (1)求f(x)遞增區(qū)間;
          (2)求f(x)的對稱軸方程;
          (3)求f(x)的最大值并寫出取最大值時自變量x的集合.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線l: (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2.
          (1)若點M的直角坐標為(2, ),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
          (2)設曲線C經(jīng)過伸縮變換 得到曲線C′,求曲線C′的內接矩形周長的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示的分數(shù)三角形,稱為“萊布尼茨三角形”.這個三角形的規(guī)律是:各行中的每一個數(shù),都等于后面一行中與它相鄰的兩個數(shù)之和(例如第4行第2個數(shù) 等于第5行中的第2個數(shù) 與第3個數(shù) 之和).則
          在“萊布尼茨三角形”中,第10行從左到右第2個數(shù)到第8個數(shù)中各數(shù)的倒數(shù)之和為(

          A.5010
          B.5020
          C.10120
          D.10130

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】袋中共有15個除了顏色外完全相同的球,其中有10個白球,5個紅球.從袋中任取2個球,所取的2個球中恰有1個白球,1個紅球的概率為(
          A.
          B.
          C.
          D.1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)=4 ﹣x的值域為

          查看答案和解析>>

          同步練習冊答案