已知函數(shù)
(1)若在
是增函數(shù),求
的取值范圍;
(2)已知,對(duì)于函數(shù)
圖象上任意不同兩點(diǎn)
,
,其中
,直線
的斜率為
,記
,若
求證:
.
(1);(2)詳見解析
解析試題分析:(1)先求,由題意
恒成立,參變分離得
,進(jìn)而求
的取值范圍;
(2)首先將向量式坐標(biāo)化,得
三點(diǎn)坐標(biāo)的關(guān)系,表示
,進(jìn)而表示
,然后根據(jù)
兩點(diǎn)坐標(biāo)結(jié)合函數(shù)
的解析式表示
,再后作差比較
-,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a2/7/1ypyh2.png" style="vertical-align:middle;" />,故只需證明
,再恒等變形為
,進(jìn)而
,設(shè)
,構(gòu)造自變量為
的函數(shù),求其最大值,只需說明最大值小于0.
試題解析:(1)由得
,
,又當(dāng)
時(shí),
,所以
;
(II),∵
,
,
∴
,∴
,
+1,
-
,∵
,
,∴
,要證
,只要證
,
即,設(shè)
,則
,
顯然令
,考慮
在
上的單調(diào)性,
令,
,
,對(duì)稱軸
,
,則
,故
在
遞減,則有
,故
.
考點(diǎn):1、導(dǎo)數(shù)在單調(diào)性上的應(yīng)用;2、直線的斜率;3、向量的坐標(biāo)運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在
處的切線與
軸平行.
(1)求的值和函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)的圖象與拋物線
恰有三個(gè)不同交點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)單調(diào)遞增區(qū)間;
(2)若存在,使得
是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
若是函數(shù)
的極值點(diǎn),1和
是函數(shù)
的兩個(gè)不同零點(diǎn),且
,求
.
若對(duì)任意,都存在
(
為自然對(duì)數(shù)的底數(shù)),使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。(
為常數(shù),
)
(Ⅰ)若是函數(shù)
的一個(gè)極值點(diǎn),求
的值;
(Ⅱ)求證:當(dāng)時(shí),
在
上是增函數(shù);
(Ⅲ)若對(duì)任意的,總存在
,使不等式
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
.
(1)當(dāng)時(shí)判斷
的單調(diào)性;
(2)若在其定義域?yàn)樵龊瘮?shù),求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù),當(dāng)
時(shí),若
,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像過原點(diǎn),且在
處的切線為直線
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù),數(shù)列
,滿足0<
<1,
,數(shù)列
滿足
,
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:0<<
<1;
(Ⅲ)若且
<
,則當(dāng)n≥2時(shí),求證:
>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為函數(shù)
圖象上一點(diǎn),
為坐標(biāo)原點(diǎn),記直線
的斜率
.
(1)若函數(shù)在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com