【題目】已知?jiǎng)狱c(diǎn)是圓
:
上的任意一點(diǎn),點(diǎn)
與點(diǎn)
的連線(xiàn)段的垂直平分線(xiàn)和
相交于點(diǎn)
.
(I)求點(diǎn)的軌跡
方程;
(II)過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)
交軌跡
于點(diǎn)
,
兩點(diǎn),直線(xiàn)
與坐標(biāo)軸不重合.
是軌跡
上的一點(diǎn),若
的面積是4,試問(wèn)直線(xiàn)
,
的斜率之積是否為定值,若是,求出此定值,否則,說(shuō)明理由.
【答案】(1) (2) 直線(xiàn)
,
的斜率之積是定值
【解析】試題分析:(I)由題意得,利用橢圓的定義,得點(diǎn)
的軌跡是以
、
為焦點(diǎn)的橢圓,進(jìn)而得到橢圓的方程;
(II)設(shè)直線(xiàn)的方程為
,聯(lián)立發(fā)出來(lái),求解
,設(shè)
所在直線(xiàn)方程為
,聯(lián)立橢圓方程得
的坐標(biāo),再求得點(diǎn)
到直線(xiàn)
的距離,根據(jù)面積列出方程,得到
的方程,即可求解
的值.
試題解析:
(I)由題意, ,又∵
∴,
∴點(diǎn)的軌跡是以
、
為焦點(diǎn)的橢圓,其中
,
∴橢圓的方程為
.
(II)設(shè)直線(xiàn)的方程為
,聯(lián)立
,得
∴
設(shè)所在直線(xiàn)方程為
,聯(lián)立橢圓方程得
或
,
點(diǎn)到直線(xiàn)
的距離
.
∴,
即,解得
,
∴直線(xiàn),
的斜率之積是定值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線(xiàn)
的參數(shù)方程為
(
為參數(shù)),曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)),曲線(xiàn)
的極坐標(biāo)方程為
.
(1)求曲線(xiàn)和
的公共點(diǎn)的極坐標(biāo);
(2)若為曲線(xiàn)
上的一個(gè)動(dòng)點(diǎn),求
到直線(xiàn)
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)滿(mǎn)足
.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實(shí)數(shù)
使得
的最小值為0?若存在,求出
的值;若不存在,說(shuō)明理由;
(3)若函數(shù),是否存在實(shí)數(shù)
,使函數(shù)
在
上的值域?yàn)?/span>
?若存在,求出實(shí)數(shù)
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】借助計(jì)算器填寫(xiě)下表:
0 | ||||
1 | ||||
10 | ||||
20 | ||||
30 | ||||
50 | ||||
70 | ||||
100 | ||||
150 | ||||
200 | ||||
250 | ||||
300 |
觀察表中的變化并歸納各函數(shù)遞增的規(guī)律:
(1)一次函數(shù)與冪函數(shù)
之間比較得出的規(guī)律;
(2)冪函數(shù)與指數(shù)函數(shù)
之間比較得出的規(guī)律;
(3)指數(shù)函數(shù)與
之間比較得出的規(guī)律.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (
為實(shí)常數(shù)) .
(I)當(dāng)時(shí),求函數(shù)
在
上的最大值及相應(yīng)的
值;
(II)當(dāng)時(shí),討論方程
根的個(gè)數(shù).
(III)若,且對(duì)任意的
,都有
,求
實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地居民用水采用階梯水價(jià),其標(biāo)準(zhǔn)為:每戶(hù)每月用水量不超過(guò)15噸的部分,每噸3元;超過(guò)15噸但不超過(guò)25噸的部分,每噸4.5元;超過(guò)25噸的部分,每噸6元.
(1)求某戶(hù)居民每月需交水費(fèi)(元)關(guān)于用水量
(噸)的函數(shù)關(guān)系式;
(2)若戶(hù)居民某月交水費(fèi)67.5元,求
戶(hù)居民該月的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
).
(1)若不等式的解集為
,求
的取值范圍;
(2)當(dāng)時(shí),解不等式
;
(3)若不等式的解集為
,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2sinxcosx(x∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[,
]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com