日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱錐中,側(cè)面與底面垂直,分別是、的中點,,.

          1)求證:平面;

          2)若是線段上的任意一點,求證:

          3)求三棱錐的體積.

          【答案】1)證明見解析;(2)證明見解析;(3.

          【解析】

          1)根據(jù)、分別是的中點,結(jié)合三角形中位線定理,及線面平行的判定定理,可得平面;

          2)由平面平面,結(jié)合面面垂直的性質(zhì)定理可得平面,可得結(jié)合及線面垂直的判定定理可得平面,再由線面垂直的性質(zhì)可得結(jié)論;

          3)先證明平面,利用三棱錐體積公式即可求解.

          1、分別是、的中點,,

          平面,平面平面;

          2,

          平面平面,平面平面,平面,

          平面平面,,

          ,則,

          ,平面,平面,平面.

          平面;

          3平面,平面.

          平面平面,.

          ,,

          所以,三角形的面積為.

          因此,三棱錐的體積.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖:四棱錐P-ABCD底面為一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥平面ABCD,F是PC中點。

          (Ⅰ)求證:平面PDC⊥平面PAD;

          (Ⅱ)求證:BF∥平面PAD。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點是曲線上的動點,延長是坐標(biāo)原點)到,使得,點的軌跡為曲線

          1)求曲線的方程;

          2)若點,分別是曲線的左、右焦點,求的取值范圍;

          3)過點且不垂直軸的直線與曲線交于,兩點,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,是邊長為1的等邊三角形,M為線段中點,.

          (1)求證:;

          (2)求直線與平面所成角的正弦值;

          (3)線段上是否存在點N,使得直線平面?若存在,求的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的圓心為,圓內(nèi)一條過點的動弦(與軸不重合),過點的平行線交于點.

          1)求出點的軌跡方程;

          2)若過點的直線的軌跡方程于不同兩點,,為坐標(biāo)原點,且,點為橢圓上一點,求點到直線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),若方程有五個不同的實數(shù)根,則的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 若不等式對任意上恒成立,則實數(shù)的取值范圍為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知過點的直線與橢圓交于不同的兩點,其中為坐標(biāo)原點

          (1),求的面積;

          (2)在軸上是否存在定點,使得直線的斜率互為相反數(shù)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)甲、乙兩地相距400千米,汽車從甲地勻速行駛到乙地,速度不得超過100千米/小時,已知該汽車每小時的運輸成本P()關(guān)于速度v(千米/小時)的函數(shù)關(guān)系是.

          1)求全程運輸成本Q(元)關(guān)于速度v的函數(shù)關(guān)系式;

          2)為使全程運輸成本最少,汽車應(yīng)以多大速度行駛?并求此時運輸成本的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案