【題目】命題“若△ABC的三個內角構成等差數列,則△ABC必有一內角為”的否命題( )
A.與原命題真假相異B.與原命題真假相同
C.與原命題的逆否命題的真假不同D.與原命題的逆命題真假相異
【答案】B
【解析】
根據命題的否命題與原命題的關系,寫出否命題,再根據互為逆否命題的兩命題同真假,否命題與逆命題互為逆否命題,則研究原命題的逆命題的真假即可.
解:原命題為:“若的三內角構成等差數列,則
必有一內角為
”,
若,
,
成等差數列,則
,又
,解得
,所以它是真命題.
否命題為:“若△ABC的三個內角不能構成等差數列,則△ABC中任意內角均不為”
根據互為逆否命題的兩命題同真假,否命題與逆命題互為逆否命題,則研究原命題的逆命題的真假,
逆命題為:“若有一內角為
,則
的三內角構成等差數列”
若有一內角為
,不妨設
,則
,所以
,即
的三內角成等差數列,所以逆命題為真,則否命題為真.
所以否命題與原命題同為真命題.
故選:.
科目:高中數學 來源: 題型:
【題目】數學老師給出一個函數,甲、乙、丙、丁四個同學各說出了這個函數的一條性質:甲:在
上函數單調遞減;乙:在
上函數單調遞增;丙:在定義域R上函數的圖象關于直線
對稱;。
不是函數的最小值.老師說:你們四個同學中恰好有三個人說的正確.那么,你認為____說的是錯誤的.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校將甲、乙等6名新招聘的老師分配到4個不同的年級,每個年級至少分配1名教師,且甲、乙兩名老師必須分到同一個年級,則不同的分法種數為______
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,圓C的圓心坐標為(1,0),半徑為1.
(1)求圓C的極坐標方程;
(2)若以極點O為原點,極軸所在直線為x軸建立平面直角坐標系.已知直線l的參數方程為(t為參數),試判斷直線l與圓C的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中央電視臺為了解一檔詩歌類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(單位:千人)如下莖葉圖所示:
其中一個數字被污損;
(1)求東部各城市觀看該節(jié)目觀眾平均人數超過西部各城市觀看該節(jié)目觀眾平均人數的概率;
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對詩歌知識的學習積累熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學習詩歌知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示):
由表中數據,試求線性回歸方程,并預測年齡在60歲的觀眾周均學習詩歌知識的時間.
參考公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司有四輛汽車,其中
車的車牌尾號為0,
兩輛車的車牌尾號為6,
車的車牌尾號為5,已知在非限行日,每輛車都有可能出車或不出車.已知
兩輛汽車每天出車的概率為
,
兩輛汽車每天出車的概率為
,且四輛汽車是否出車是相互獨立的.
該公司所在地區(qū)汽車限行規(guī)定如下:
(1)求該公司在星期四至少有2輛汽車出車的概率;
(2)設表示該公司在星期一和星期二兩天出車的車輛數之和,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著社會發(fā)展對環(huán)保的要求,越來越多的燃油汽車被電動汽車取代,為了了解某品牌的電動汽車的節(jié)能情況,對某一輛電動汽車“行車數據”的兩次記錄如下表:
記錄時間 | 累計里程 (單位:公里) | 平均耗電量(單位: | 剩余續(xù)航里程 (單位:公里) |
2020年1月1日 | 5000 | 0.125 | 380 |
2020年1月2日 | 5100 | 0.126 | 246 |
(注:累計里程指汽車從出廠開始累計行駛的路程,累計耗電量指汽車從出廠開始累計消耗的電量,)
下面對該車在兩次記錄時間段內行駛100公里的耗電量估計正確的是( )
A.等于B.
到
之間C.等于
D.大于
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com