日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 、間的“距離”。若向量、滿足:①;②;③對任意的則                  (    )

                   A.       B.     C.     D.

          C


          解析:

          得,,則,化簡可得,,,,,即,,

          。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          現(xiàn)有變換公式T:
          4
          5
          x+
          3
          5
          y=x′
          3
          5
          x-
          4
          5
          y=y′
          可把平面直角坐標(biāo)系上的一點P(x,y)變換到這一平面上的一點P′(x′,y′).
          (1)若橢圓C的中心為坐標(biāo)原點,焦點在x軸上,且焦距為2
          2
          ,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標(biāo)準(zhǔn)方程,并求出其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標(biāo);
          (2)若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.求(1)中的橢圓C在變換T下的所有不動點的坐標(biāo);
          (3)在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換T下的不動點的存在情況和個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          d(
          a
          ,
          b
          )=|
          a
          -
          b
          |
          為兩個向量
          a
          、
          b
          間的“距離”.若向量
          a
          、
          b
          滿足:①|
          b
          |=1
          ;②
          a
          b
          ;③對任意的t∈R,恒有d(
          a
          ,t
          b
          )≥d(
          a
          ,
          b
          )
          則( 。
          A、
          a
          b
          B、
          a
          ⊥(
          a
          -
          b
          )
          C、
          b
          ⊥(
          a
          -
          b
          )
          D、(
          a
          +
          b
          )⊥(
          a
          -
          b
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義變換T:
          cosθ•x+sinθ•y=x′
          ′sinθ•x-cosθ•y=y′
          可把平面直角坐標(biāo)系上的點P(x,y)變換到這一平面上的點P′(x′,y′).特別地,若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.
          (1)若橢圓C的中心為坐標(biāo)原點,焦點在x軸上,且焦距為2
          2
          ,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標(biāo)準(zhǔn)方程.并求出當(dāng)θ=arctan
          3
          4
          時,其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標(biāo);
          (2)當(dāng)θ=arctan
          3
          4
          時,求(1)中的橢圓C在變換T下的所有不動點的坐標(biāo);
          (3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換T:
          cosθ•x+sinθ•y=x′
          ′sinθ•x-cosθ•y=y′
          θ≠
          2
          ,k∈Z)下的不動點的存在情況和個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

          定義變換可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

          (1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

          (2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

          (3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換

          )下的不動點的存在情況和個數(shù).

           

          查看答案和解析>>

          同步練習(xí)冊答案