日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)二次函數(shù)的圖像過原點(diǎn),,的導(dǎo)函數(shù)為,且,

          (1)求函數(shù),的解析式;

          (2)求的極小值;

          (3)是否存在實(shí)常數(shù),使得若存在,求出的值;若不存在,說明理由.

           

          【答案】

          (1),;(2)的極小值為;(3)存在這樣的實(shí)常數(shù),且

          【解析】

          試題分析:(1)由二次函數(shù)的圖像過原點(diǎn)可求,從而,由可解得,從而得;由可解得從而得;(2)由題可知,通過導(dǎo)函數(shù)可得的單調(diào)性,從而可得的極小值為;(3)根據(jù)題意可知,只須證明的函數(shù)圖像在切線的兩側(cè)即可,故求出函數(shù)在公共點(diǎn)(1,1)的切線方程,只須驗(yàn)證:,從而找到實(shí)數(shù)存在這樣的實(shí)常數(shù),且.

          試題解析:(1)由已知得,

          ,從而,∴

          。

           ,解得

          。        4分

          (2)

          求導(dǎo)數(shù)得.        8分

          在(0,1)單調(diào)遞減,在(1,+)單調(diào)遞增,從而的極小值為.

          (3)因  與有一個公共點(diǎn)(1,1),而函數(shù)在點(diǎn)(1,1)的切線方程為.

          下面驗(yàn)證都成立即可.

          ,得,知恒成立.

          設(shè),即 ,

          求導(dǎo)數(shù)得,

          在(0,1)上單調(diào)遞增,在上單調(diào)遞減,所以 的最大值為,所以恒成立.

          故存在這樣的實(shí)常數(shù),且.        13分

          考點(diǎn):1.利用導(dǎo)數(shù)處理函數(shù)的單調(diào)性和最值;2.利用導(dǎo)數(shù)處理不等式恒成立問題;2.利用函數(shù)的單調(diào)性證明函數(shù)不等式

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)的圖像過原點(diǎn),,的導(dǎo)函數(shù)為,且

          (1)求函數(shù),的解析式;(2)求的極小值;

          (3)是否存在實(shí)常數(shù),使得若存在,求出的值;若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆湖南省衡陽市八中高三上學(xué)期第一次月考文科數(shù)學(xué) 題型:解答題

          (13分)設(shè)二次函數(shù)的圖像過原點(diǎn),,
          的導(dǎo)函數(shù)為,且,
          (1)求函數(shù),的解析式;(2)求的極小值;
          (3)是否存在實(shí)常數(shù),使得若存在,求出的值;若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省衡陽市高三上學(xué)期第一次月考文科數(shù)學(xué) 題型:解答題

          (13分)設(shè)二次函數(shù)的圖像過原點(diǎn),

          的導(dǎo)函數(shù)為,且,

          (1)求函數(shù)的解析式;(2)求的極小值;

          (3)是否存在實(shí)常數(shù),使得若存在,求出的值;若不存在,說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆安徽省高三第一學(xué)期期中文科數(shù)學(xué)試卷 題型:解答題

          設(shè)二次函數(shù)的圖像過原點(diǎn),,

          的導(dǎo)函數(shù)為,且,

          (1)求函數(shù),的解析式;

          (2)求的極小值;

          (3)是否存在實(shí)常數(shù),使得若存在,求出的值;若不存在,說明理由。

           

          查看答案和解析>>

          同步練習(xí)冊答案