【題目】已知,
,直線
的斜率為
,直線
的斜率為
,且
.
(1)求點(diǎn)的軌跡
的方程;
(2)設(shè),
,連接
并延長(zhǎng),與軌跡
交于另一點(diǎn)
,點(diǎn)
是
中點(diǎn),
是坐標(biāo)原點(diǎn),記
與
的面積之和為
,求
的最大值.
【答案】(1) ;(2)
.
【解析】試題分析:(1)設(shè),利用
求得點(diǎn)
的軌跡
的方程;(2)由
,
分別為
,
,
的中點(diǎn),故
,故
與
同底等高,故
,
,對(duì)斜率分類討論,聯(lián)立方程巧用維達(dá)表示面積即可.
試題解析:
(1)設(shè),∵
,
,∴
,
,
又,∴
,∴
,
∴軌跡的方程為
(注:
或
,如不注明扣一分).
(2)由,
分別為
,
,
的中點(diǎn),故
,
故與
同底等高,故
,
,
當(dāng)直線的斜率不存在時(shí),其方程為
,此時(shí)
;
當(dāng)直線的斜率存在時(shí),設(shè)其方程為:
,設(shè)
,
,
顯然直線不與
軸重合,即
;
聯(lián)立,解得
,
,故
,
故
,
點(diǎn)到直線
的距離
,
,令
,
故
,
故的最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,
,
且
在
上的最大值為
,最小值為
,試求
,
的值;
(2)若,
,且
對(duì)任意
恒成立,求
的取值范圍.(用
來表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識(shí)付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長(zhǎng),為了了解網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足
歲的網(wǎng)民共
人,調(diào)查結(jié)果如下:
(1)請(qǐng)完成上面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過
的前提下,能否認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān)?
(2)在上述樣本中用分層抽樣的方法,從支持和反對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的兩組網(wǎng)民中抽取名,若在上述
名網(wǎng)民中隨機(jī)選
人,設(shè)這
人中反對(duì)態(tài)度的人數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望.
附: ,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,
平面
,且
是
的中點(diǎn).
(1)求證: 平面
;
(2)求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=,設(shè)bn=
,n∈N*。
(1)證明{bn}是等比數(shù)列(指出首項(xiàng)和公比);
(2)求數(shù)列{log2bn}的前n項(xiàng)和Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,
,
分別為
,
的中點(diǎn)
(1)求證:面
;
(2)在棱上是否存在一點(diǎn)
,使得
面
,若存在,試確定
的值,若不存在說明理由;
(3)在(2)的條件下,求面與面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲同學(xué)寫出三個(gè)不等式::
,
:
,
:
,然后將
的值告訴了乙、丙、丁三位同學(xué),要求他們各用一句話來描述,以下是甲、乙、丙、丁四位同學(xué)的描述:
乙:為整數(shù);
丙:是
成立的充分不必要條件;
。是
成立的必要不充分條件;
甲:三位同學(xué)說得都對(duì),則的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)
滿足
,且當(dāng)
時(shí),
,則下列結(jié)論正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國(guó). 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動(dòng)物生長(zhǎng). 某科研團(tuán)隊(duì)在某水域放入一定量水葫蘆進(jìn)行研究,發(fā)現(xiàn)其蔓延速度越來越快,經(jīng)過
個(gè)月其覆蓋面積為
,經(jīng)過
個(gè)月其覆蓋面積為
. 現(xiàn)水葫蘆覆蓋面積
(單位
)與經(jīng)過時(shí)間
個(gè)月的關(guān)系有兩個(gè)函數(shù)模型
與
可供選擇.
(參考數(shù)據(jù): )
(Ⅰ)試判斷哪個(gè)函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過幾個(gè)月該水域中水葫蘆面積是當(dāng)初投放的倍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com