【題目】已知橢圓的左右焦點分別為
,
上的動點
到兩焦點的距離之和為4,當(dāng)點
運動到橢圓
的上頂點時,直線
恰與以原點
為圓心,以橢圓
的離心率為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點分別為
,若
交直線
于
兩點.問以
為直徑的圓是否過定點?若過定點,請求出該定點坐標(biāo);若不過定點,請說明理由.
【答案】(1);(2)
,
【解析】試題分析:(1)由橢圓定義可知,
,由原點到直線
的距離求出
,得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)
,
,則
,
,由
,得
,求出M,N的坐標(biāo),因為
,故以
為直徑的圓與
軸交于兩點,在以
為直徑的圓中應(yīng)用相交弦定理求出
,從而以
為直徑的圓恒過兩個定點
,
.
試題解析:(1)由橢圓定義可知,
,
直線,
故,
∴,
故橢圓的標(biāo)準(zhǔn)方程為:
.
(2)設(shè),點
,則
,
,
由,得:
,
直線方程為:
,令
,則
,故
;
直線方程為:
,令
,則
,故
;
因為,故以
為直徑的圓與
軸交于兩點,設(shè)為
,
在以為直徑的圓中應(yīng)用相交弦定理得:
,
因為,所以
,
從而以為直徑的圓恒過兩個定點
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是圓柱體
的母線,
是底面圓的直徑,
分別是
的中點,
.
(1)求證: 平面
;
(2)求點到平面
的距離;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男
人,女
人),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)只能自由選擇其中一道題進行解答.選題情況如下表(單位:人):
幾何題 | 代數(shù)題 | 總計 | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
幾何題 | 代數(shù)題 | 總計 | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的名女生中,任意抽取兩人,對她們的答題情況進行全程研究,記甲、乙兩位女生被抽到的人數(shù)為
,求
的分布列和
.
附表及公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高中男生中隨機選取100名學(xué)生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
(1)估計該校的100名同學(xué)的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點值作代表);
(2)若要從體重在,
,
三組內(nèi)的男生中,用分層抽樣的方法選取6人組成一個活動隊,再從這6人中選2人當(dāng)正副隊長,求這2人中至少有1人體重在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(Ⅰ)求橢圓的方程.
(Ⅱ)若,
是橢圓
上兩個不同的動點,且使
的角平分線垂直于
軸,試判斷直線
的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場做促銷活動,凡是一家三口一起來商場購物的家庭,均可參加返現(xiàn)活動,活動規(guī)則如下:商家在箱中裝入20個大小相同的球,其中6個是紅球,其余都是黑球;每個家庭只能參加一次活動,參加活動的三口人,每人從中任取一球,只能取一次,且每人取球后均放回;若取到黑球則獲得4元返現(xiàn)金,若取到紅球則獲得12元返現(xiàn)金.若某家庭參與了該活動,則該家庭獲得的返現(xiàn)金額的期望是( ).
A. 22.4 B. 21.6 C. 20.8 D. 19.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是奇函數(shù)
的導(dǎo)函數(shù),
,當(dāng)
時,
,則使得
成立的
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com