【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲(chǔ)量巨大,已發(fā)現(xiàn)礦種76種,探明儲(chǔ)量39種,其中釩、鈦資源儲(chǔ)量分別占全國(guó)的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值(
值越大產(chǎn)品的性能越好)與這種新合金材料的含量
(單位:克)的關(guān)系為:當(dāng)
時(shí),
是
的二次函數(shù);當(dāng)
時(shí),
.測(cè)得部分?jǐn)?shù)據(jù)如下表:
| 0 | 2 | 6 | 10 | … |
8 | 8 | … |
(Ⅰ)求關(guān)于
的函數(shù)關(guān)系式
;
(Ⅱ)求該新合金材料的含量為何值時(shí)產(chǎn)品的性能達(dá)到最佳.
【答案】(Ⅰ) (Ⅱ)當(dāng)
時(shí)產(chǎn)品的性能達(dá)到最佳.
【解析】
(Ⅰ)當(dāng)0≤x<7時(shí),y是x的二次函數(shù),可設(shè)y=ax2+bx+c(a≠0),利用已知條件求出a,b,c得到函數(shù)的解析式;
(Ⅱ)利用分段函數(shù)求出函數(shù)的最值,推出結(jié)論.
(Ⅰ)當(dāng)時(shí),
是
的二次函數(shù),可設(shè)
,
由可得
,由
,即
,
由,可得
,解得
,
即有;
當(dāng)時(shí),
,由
,
,可得
,即有
;
綜上可得.
(Ⅱ)當(dāng)時(shí),
,
即有時(shí),取得最大值12;
當(dāng)時(shí),
遞減,可得
,當(dāng)
時(shí),取得最大值
.
綜上可得當(dāng)時(shí)產(chǎn)品的性能達(dá)到最佳.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心為A,直線
過點(diǎn)B(1,0)且與x軸不重合,設(shè)P為圓A上一點(diǎn),線段PB的垂直平分線交直線PA于E
(1)證明為定值,并寫出E的軌跡方程;
(2)設(shè)點(diǎn)M的軌跡為曲線C1,直線交C1于M,N兩點(diǎn),問:在
軸上是否存在定點(diǎn)D使直線DM與DN的傾斜角互補(bǔ),若存在求出D點(diǎn)的坐標(biāo),否則說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的圖像過點(diǎn)
,且在點(diǎn)
處的切線方程為
.
(1)求的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把定義域?yàn)?/span>且同時(shí)滿足以下兩個(gè)條件的函數(shù)
稱為“
函數(shù)”:(1)對(duì)任意的
,總有
;(2)若
,
,則有
成立,下列判斷正確的是( )
A.若為“
函數(shù)”,則
B.若為“
函數(shù)”,則
在
上為增函數(shù)
C.函數(shù)在
上是“
函數(shù)”
D.函數(shù)在
上是“
函數(shù)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,且
,其前8項(xiàng)和為52,
是各項(xiàng)均為正數(shù)的等比數(shù)列,且滿足
,
.
(1)求數(shù)列和
的通項(xiàng)公式;
(2)令,數(shù)列
的前
項(xiàng)和為
,若對(duì)任意正整數(shù)
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,右頂點(diǎn)為
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段
的中點(diǎn)
的軌跡方程;
(3)過原點(diǎn)的直線交橢圓于
兩點(diǎn),求
面積的最大值,并求此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張?jiān)谔詫毦W(wǎng)上開一家商店,他以10元每條的價(jià)格購(gòu)進(jìn)某品牌積壓圍巾2000條.定價(jià)前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):商店以30元每條的價(jià)格銷售,平均每日銷售量為10條;
商店以25元每條的價(jià)格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量
(條)是售價(jià)
(元)
的一次函數(shù),且各個(gè)商店間的售價(jià)、銷售量等方面不會(huì)互相影響.
(1)試寫出圍巾銷售每日的毛利潤(rùn)(元)關(guān)于售價(jià)
(元)
的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價(jià),使得每日的毛利潤(rùn)最高(每日的毛利潤(rùn)為每日賣出商品的進(jìn)貨價(jià)與銷售價(jià)之間的差價(jià));
(2)考慮到這批圍巾的管理、倉(cāng)儲(chǔ)等費(fèi)用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉(cāng)儲(chǔ)等費(fèi)用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價(jià),使這批圍巾的總利潤(rùn)最高(總利潤(rùn)=總毛利潤(rùn)-總管理、倉(cāng)儲(chǔ)等費(fèi)用)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng),
時(shí),求滿足
的
的值;
(2)若函數(shù)是定義在
上的奇函數(shù).
①存在,使得不等式
有解,求實(shí)數(shù)
的取值范圍;
②若函數(shù)滿足
,若對(duì)任意
且
,不等式
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)條件求下列各函數(shù)的解析式:
(1)已知函數(shù)f(x+1)=3x+2,則f(x)的解析式;
(2)已知是一次函數(shù),且滿足
,求
的解析式;
(3)已知滿足
,求
的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com