日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知函數(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數.

          (I)求f(0)的值和實數m的值;

          (II)當m=1時,判斷函數f(x)在(﹣1,1)上的單調性,并給出證明;

          (III)若且f(b﹣2)+f(2b﹣2)>0,求實數b的取值范圍.

          【答案】(1)1(2)見解析(3)

          【解析】試題分析:I由奇函數的定義可得f(﹣x)+f(x)= loga=0,進一步整理得1﹣m2x2=1﹣x2恒成立,比較系數可得m=1或m=﹣1(舍去);(II)根據函數單調性的定義證明即可;(III)由,得0<a<1,根據條件構造不等式f(b﹣2)>f(2﹣2b),然后利用函數的單調性得到關于b的不等式求解即可。

          試題解析:(I)∵f(0)=loga1=0.

          ∵函數f(x)是奇函數,

          ∴ f(﹣x)=﹣f(x)

          ∴f(﹣x)+f(x)=0

          ∴l(xiāng)oga+loga=0;

          ∴l(xiāng)oga=0

          =1,

          整理得1﹣m2x2=1﹣x2對定義域內的x都成立.

          ∴m2=1.

          所以m=1或m=﹣1(舍去)

          ∴m=1.

          (II)由(I)可得f(x)=loga;

          設﹣1<x1<x2<1,則

          ∵﹣1<x1<x2<1∴x2﹣x1>0,(x1+1)(x2+1)>0

          ∴t1>t2

          ① 當a>1時,logat1>logat2,即f(x1)>f(x2).

          ∴當a>1時,f(x)在(﹣1,1)上是減函數.

          ②當0<a<1時,logat1<logat2,即f(x1)<f(x2).

          ∴當0<a<1時,f(x)在(﹣1,1)上是增函數.

          (III)∵

          ∴0<a<1,

          由f(b﹣2)+f(2b﹣2)>0,得f(b﹣2)>﹣f(2b﹣2),

          ∵函數f(x)是奇函數,

          ∴f(b﹣2)>f(2﹣2b),

          故由(II)得f(x)在(﹣1,1)上是增函數,

          解得

          ∴實數b的取值范圍是。

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】在四棱錐中,底面是正方形,側面底面,且,分別為的中點.

          (1)求證:平面

          (2)在線段上是否存在點,使得二面角的余弦值為,若存在,請求出點的位置;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數據:

          (1)請畫出上表數據的散點圖;

          (2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程=x+;

          參考公式:用最小二乘法求線性回歸方程系數公式 ,.)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數f(x)=2x+1,x∈N*.x0,n∈N*,使f(x0)+f(x0+1)+f(x0n)=63成立,則稱(x0,n)為函數f(x)的一個“生成點”.則函數f(x)的“生成點”共有(  )

          A.1B2C.3個 D4

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】知數列,,且直線

          ⑴求數列通項公式;

          函數,,求函數最小值;

          ,表示數列和,問:是否存在關于的整,使得于一切小于2的自然數成立?若存在,寫出解析式,并加以證明;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知三棱錐P—ABC中,PC底面ABC,AB=BC,D、F分別為AC、PC的中點,DEAP于E。(1)求證:AP平面BDE;(2)求證:平面BDE平面BDF;(3)若AE:EP=1:2,求截面BEF分三棱錐P—ABC所成上、下兩部分的體積比。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

          1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

          2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數學期望.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數上的偶函數, 上的奇函數,且.

          (1)求的解析式;

          (2)若函數上只有一個零點,求實數的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在四棱錐中,底面為直角梯形,,底面,,的中點,為棱的中點.

          I)證明:平面;

          II)已知,求點到平面的距離.

          查看答案和解析>>

          同步練習冊答案